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Unmanned Aerial Vehicles (UAVs) have significantly enhanced fog computing by acting as both flexible compu-
tation platforms and communication mobile relays. In this paper, we consider four important and interdependent
modules: attitude control, trajectory planning, resource allocation, and task assignment, and propose a holistic
framework that jointly optimizes the total latency and energy consumption for UAV-assisted fog computing in
a three-dimensional spatial domain with varying terrain elevations and dynamic task generations. We first es-
tablish a fuzzy-enhanced adaptive reinforcement proportional-integral-derivative control model to control the
attitude. Then, we propose an enhanced Ant Colony System (ACS) based algorithm, that includes a safety value
and a decoupling mechanism to overcome the convergence issue in classical ACS, to compute the optimal UAV
trajectory. Finally, we design an algorithm based on the Particle Swarm Optimization technique, to determine
where each offloaded task should be executed. Under our proposed framework, the outcome of one module
would affect the decision-making in another, providing a holistic perspective of the system and thus leading to
improved solutions. We demonstrate by extensive simulation results that our proposed framework can signif-
icantly improve the overall performance, measured by latency and energy consumption, compared to existing
mainstream approaches.

1. Introduction

Driven by the development of the Internet of Things (IoT) [1], mo-
bile terminal devices such as smartphones and tablets are now capable of
generating and collecting massive amounts of data. However, the ability
of processing these data, such as performing computational tasks, in the
IoT devices are still limited [2,3]. On the other hand, Unmanned Aerial
Vehicles (UAVs) have been recently identified as a versatile platform
that connects IoT devices and servers or data centers via the network
edge [4]. In addition, some UAVs are equipped with computational ca-
pabilities and thus can be regarded as “moving fog nodes" for offloading
certain computational tasks. To fully utilize the versatility and flexibil-
ity of UAVs in fog computing, key considerations include the manage-

ment of each UAV’s attitude, the strategic planning of their respective
trajectories, and the efficient task assignment policy to determine the
appropriate computing device for each task.

We consider a fog computing environment with a single UAV de-
ployed at the network edge, aiming at maximizing the energy efficiency
by collaboratively controlling the attitudes, planning the trajectories,
allocating the transmission and computation resources, and assigning
computing tasks to appropriate devices for execution. Specifically, at-
titude control (by adjusting pitch, roll, and yaw) ensures a stable and
precise orientation of the UAV during operation, which is a necessary
condition to maintain a high quality of communication with IoT de-
vices and other fog nodes [5]. In addition, a stable attitude facilitates
the UAV to effectively perform computation and storage tasks as a fog
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\begin {equation}\label {equ: dynamics_equation} \left \{ \begin {array}{@{}l} \ddot {x}(t) = \frac {1}{m} U_{1}(t)(\sin \phi \sin \psi +\cos \phi \sin \theta \cos \psi ) \\ \ddot {y}(t) = \frac {1}{m} U_{1}(t)(-\sin \phi \sin \psi +\cos \phi \sin \theta \sin \psi ) \\ \ddot {z}(t) = \frac {1}{m} U_{1}(t)(\cos \phi \cos \theta )-g \\ \ddot {\phi }(t) = \frac {1}{I_{x}}\left (l U_{2}(t)-\dot {\theta } \dot {\psi }\left (I_{z}-I_{y}\right )\right ) \\ \ddot {\theta }(t) = \frac {1}{I_{y}}\left (l U_{3}(t)-\dot {\phi } \dot {\psi }\left (I_{x}-I_{z}\right )\right ) \\ \ddot {\psi }(t) = \frac {1}{I_{z}}\left (U_{4}(t)-\dot {\phi } \dot {\theta }\left (I_{y}-I_{x}\right )\right ) \end {array} \right .\end {equation}
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\begin {equation}F_{i}(t)=C_{T}(t) \omega _{i}(t)^{2}, \label {eqn:fi}\end {equation}
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\begin {equation}C_M(t) = 2R \cdot C_T(t)=\frac {\left (\frac {1}{2 \pi }\right )^2 \rho _a(t)(2 R)^5}{N_B \int _{r_0}^R P_t^4 P_w Q_{\gamma }(t) dr}, \label {Xeqn5-5}\end {equation}
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\begin {equation}\rho _{a}(t) = \frac {P_{g} \cdot M_{g}} {R_{g} \cdot \Theta (t)}, \label {Xeqn6-6}\end {equation}
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\begin {equation}P^{\text {LoS}}_j(t)=\frac {1}{1+\zeta _j \cdot \exp \left (-\left (\theta _{j}-\zeta _j \right )\right )}. \label {Xeqn7-7}\end {equation}
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\begin {equation}r_{(m, n)}(t)=W_{(m, n)} \log _2\left (1+\xi _{(m, n)}(t)\right ), \label {Xeqn9-9}\end {equation}
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\begin {equation}E^{\mathrm {MOV}}(t)=\sum _{i=1}^{4}\left (I_{i}(t)\cdot L\right )=\sum _{i=1}^{4}\left (\frac {V_{m}-\omega _{i}(t) P_{m}}{R_m} \cdot L\right ), \label {eqn: move_enegy}\end {equation}
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Table 1

A summary and comparison of related studies.
Research Year Process(es) focused Method(s) Objective(s)
[41] 2022 TA Heuristic Harris Hawks Optimization Min. energy consumption
[18] 2022 TP Clustered-PSO Min. energy efficiency
[32] 2022 TP Enhanced ACS Avoid path deadlock
[33] 2022 TP Segmented ACS with Self-healing Routing Avoid path deadlock
[27] 2021 3D-TP Double-layer ACS Optimal trajectory
[12] 2024  3D-TP Genetic Algorithm (GA) & SCA Optimal trajectory
[20] 2024  3D-TP Chaotic-Polarized-Simulated scheme ACO Min. trajectory loss rate
[13] 2019 ATC Traditional PID controller Max. control accuracy
[15] 2024 ATC Fuzzy PID Controller Min. control bias
[171 2024 ATC RL (Deep Q-Network) PID Controller Max. control accuracy
[30] 2023 TA&RA MARL & Stochastic Game Model Min. energy consumption and latency
[14] 2016  3D-TP & ATC Fuzzy PID controller Control attitude and track trajectory
[16] 2024 3D-TP & ATC RL PID Controller Avoidance of obstacles
[35] 2023  2D-TP & TA RL (Deep Q-Network) Min. energy consumption and latency
[28] 2020 3D-TP & TA MARL Max. long-term resource efficiency
[9] 2022 3D-TP & TA Successive convex approximation Min. latency
[37] 2023  3D-TP & TA DRL Min. latency
[42] 2019  2D-TP & TA & RA GA & Stepwise Approximation Min. energy consumption and latency
[29] 2020  3D-TP & TA & RA SCA & ADMM (Alternating Direction Method of Multipliers) =~ Max. UAV energy efficiency
[34] 2023  3D-TP & TA & RA RL (MADDPG) Min. energy consumption and latency
[11] 2024 3D-TP & TA & RA Differential Evolutionary (DE) & RL (TD3) Optimal trajectory and convergence

Our Work 2025 3D-TP & TA & RA & ATC

ACS-DS & PSO & FEAR-PID

Min. energy consumption and latency

Note: TP = Trajectory Planning, TA = Task Assignment, RA = Resource Allocation, ATC = Attitude Control

node. On the other hand, trajectory planning of the UAV can re-
duce its power consumption by identifying the most efficient path to
collect data and tasks based on the locations of IoT devices [6]. Finally,
task assignment refers to the process of deciding whether a specific
task should be handled locally by the IoT device, processed in the fog
layer (including the UAV), or offloaded to the central cloud based on
real-time application-specific scenarios [7]. Specific objectives, includ-
ing minimizing latency, maximizing throughput, or optimizing energy
efficiency, can be achieved by assigning tasks to appropriate devices.
Task assignment is often jointly optimized with resource allocation,
where transmission resources such as power and bandwidth are dis-
tributed among different transmission pairs in the network, to facilitate
the transmission process and improve the overall efficiency.

The four processes that we consider are inherently linked in UAV-
assisted fog computing. For example, a UAV’s attitude control would
ensure that it maintains optimal orientations while following a planned
trajectory or processing a task. Also, when deciding whether to offload a
certain task to the fog or the cloud and how to allocate relevant transmis-
sion resources, the energy consumption and latency for a certain UAV
to reach the proximity of the IoT initiating the task along a planned
trajectory should also be taken into account.

Existing studies have considered two or three processes for joint opti-
mization. For example, Cheng et al. [8] proposed three decision-making
algorithms to solve the joint optimization problem involving energy con-
sumption and mean delay. Zhou et al. [9] proposed a two-time-scale
optimization framework that jointly determines caching placement and
task offloading decisions while adaptively adjusting the UAV trajectory.
However, few considered all these aspects together in an interconnected
manner. A summary of relevant studies is provided in Table 1, and we
will discuss them in more detail in Section 2.

This work substantially extends our earlier conference paper [10],
to better capture the practical dynamics of UAV-assisted fog comput-
ing networks. The major improvements include: 1) While the previ-
ous study focused on a two-dimensional setting with simplified flight
and communication assumptions, the present work develops a three-
dimensional, terrain-aware network model that incorporates altitude
variation and realistic environmental constraints; 2) We introduce an
additional module (attitude control) for quadrotor UAVs, enabling the
system to maintain stable flight, enhance link reliability under varying
orientations, and mitigate latency during altitude transitions; and 3) We
refine the algorithm for trajectory planning to better avoid deadlock by

introducing decoupling and safety values mechanisms. These extensions
allow the UAV to adapt its physical configuration and communication
behavior in a coordinated manner, thereby improving overall energy ef-
ficiency, communication stability, and task execution performance be-
yond what was achieved in [10]. Compared to similar existing studies
(e.g.,[11,12]), which only considered the trajectory planning and flight
attitude at independent static points, we jointly consider planning the
optimal trajectory and determining the attitudes, taking into account the
extra consumption required for changing attitude along the trajectory.
Our research is expected to provide new useful insights in UAV-assisted
fog computing applications for improving the overall performance and
efficiency.

Although some of the individual strategies employed in this work,
such as fuzzy, adaptive, and PID algorithms, are well-established, the
novelty of our approach lies in how these algorithms are integrated and
jointly optimized within a unified UAV-assisted fog computing frame-
work. In contrast to most existing studies that treat control and net-
working processes separately, our framework co-designs attitude con-
trol, trajectory planning, task assignment, and resource allocation in a
mutually dependent manner. This cross-layer integration enables the
UAV to adapt its physical dynamics and communication decisions in real
time according to network conditions, task demands, and environmental
factors. As a result, the proposed approach improves system-level per-
formance in terms of energy efficiency, communication reliability, and
latency, thereby providing a new perspective on the joint optimization
of control and communication functions in UAV-enabled fog computing
networks.

The contributions of this paper are summarized as follows.

e From a computer and communication network perspective, this
work proposes a unified optimization framework for UAV-assisted
fog computing networks that jointly integrates attitude con-
trol, trajectory planning, task assignment, and resource alloca-
tion within a three-dimensional network topology. By coupling the
UAV’s physical-layer control (attitude control) with network-layer
decision making (resource allocation and task assignment), our
cross-layer joint optimization framework captures the mutual de-
pendencies among communication stability, mobility dynamics, and
computational load distribution, thereby achieving adaptive connec-
tivity, reduced latency, and improved overall network performance
in realistic, terrain-aware IoT environments.
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e We develop a fuzzy-enhanced adaptive reinforcement proportional-
integral-derivative (FEAR-PID) model for attitude management of
quadrator UAVs. Compared with classical PID and conventional
fuzzy-PID control commonly used in existing studies, FEAR-PID cap-
tures interdependencies among parameters and adapts dynamically
to environmental changes. Our results demonstrate that FEAR-PID
significantly enhances stability during takeoff, cruising, and landing
phases, thereby effectively reducing latency and energy consumption
in UAV-assisted fog computing systems.

We propose a computationally efficient algorithm called ACS-DS
(Ant Colony System with Decoupling and Safety values) for UAV tra-
jectory planning. The ACS-DS algorithm integrates decoupling and
safety value mechanisms to address typical limitations of classical
ACS, such as slow convergence rates and susceptibility to local op-
tima. Numerical experiments also confirm ACS-DS’s superior conver-
gence performance relative to mainstream heuristic and reinforce-
ment learning-based methods.

We propose a heuristic algorithm based on PSO principles to effec-
tively resolve the resource allocation and task assignment problems,
given that an initial trajectory of the UAV has been determined.
The heuristic algorithm efficiently overcomes the inherent complex-
ities of the underlying non-convex optimization problems, providing
quasi-optimal solutions for task assignment and resource allocation
decisions.

We demonstrate, through extensive numerical experiments, that our
proposed holistic framework can reduce overall operational effi-
ciency cost by more than 67% reduction in overall operational costs
compared to existing heuristic and reinforcement learning-based
methodologies. Our analysis and results underscore the importance
of considering interdependencies among attitude control, trajectory
planning, resource allocation, and task assignment in UAV-assisted
fog computing. Consequently, the holistic approach significantly
outperforms methods optimizing individual components separately,
highlighting the cumulative benefits of joint optimization in such
environment.

The rest of this paper is organized as follows. Section 2 reviews recent
advancements on attitude control, trajectory planning, and task assign-
ment in UAV-assisted fog computing. Section 3 provides descriptions on
the UAV architecture as well as key metrics at the system level. Section 4
explains the formulation of the joint optimization problem. Section 5 de-
scribes the proposed computationally efficient algorithms to solve the
problem in detail. Section 6 demonstrates the improvements of the pro-
posed algorithm by extensive numerical results. Section 7 concludes the

paper.

2. Related work
2.1. Attitude control

The proportional-integral-derivative (PID) control system is a fun-
damental approach widely used in the attitude control and trajectory
planning of quadrotor UAVs [13,14]. Building on this foundation, fuzzy
PID control introduces adaptive capabilities by incorporating fuzzy logic
to dynamically adjust the proportional-integral (PI) and proportional-
derivative (PD) components, resulting in improved stability and reduced
trajectory tracking errors [15]. Recent studies further enhance these
methods by leveraging reinforcement learning (RL). For instance, RL
has been employed to regulate linear velocity while fuzzy logic manages
angular velocity, achieving a complementary control strategy [16]. An-
other approach is the participation of RL in the construction of the PID
controllers, which optimizes the gain parameters in real-time to achieve
more accurate adaptive control under dynamic and complex environ-
mental conditions [17].
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2.2. Trajectory planning

For trajectory planning of UAVs, heuristic algorithms such as PSO
[18], ACS [19,20], and genetic algorithm (GA) [12], have been adopted
to overcome the space and computation complexities in such problems.
Compared with another branch of approaches that use neural networks
and deep learning as the key techniques (e.g., [11,21]), heuristic algo-
rithms are more interpretable and less data dependent, and thus more
appropriate for UAV-assisted fog computing scenarios where the oper-
ational environments are usually highly diverse and dynamic [22], and
transparent heuristics are preferred for regulators to validate and verify
the operation. Among the heuristic algorithms, the PSO [23] is one of
the most commonly used techniques in such problems. However, one
major concern of applying PSO in complex systems is that PSO may be
converged prematurely to local optima [24].

ACS, based on the study of ants searching for food, is another com-
monly adopted technique in discrete and continuous optimization prob-
lems [25,26]. While ACS-based approaches are well-known for their
robustness, they also suffer the disadvantage of being prone to local
optima due to premature convergence like PSO. To overcome this issue,
Wang et al. [27] presented an adaptive double-layer ant colony opti-
mization algorithm (DL-ACS) based on an elitist strategy (ADAS) and an
improved moving average algorithm (IMA) to solve a three-dimensional
UAV trajectory planning problem. Recently, Yan et al. [20] proposed
a chaotic-polarized-simulated ant colony optimization (CPS-ACO) algo-
rithm, by incorporating chaotic mapping for initial pheromone distribu-
tion, a polarizing pheromone recording rule, and a simulated annealing
mechanism, CPS-ACO demonstrated enhanced convergence speed and
robustness against local optima in trajectory planning.

2.3. Task assignment

Resource allocation or task assignment problems have been exten-
sively studied in existing studies. For example, Cui et al. [28] proposed
a multi-agent Q-learning-based reinforcement learning (MARL) frame-
work, where each agent independently executes the allocation algorithm
to optimize the overall energy efficiency. Li et al. [29] both consid-
ered a joint optimization problem involving trajectory optimization and
task allocation, with the goal of minimizing UAV energy consumption
and optimizing computation offloading and using successive convex ap-
proximation (SCA) technique to solve it. Wu et al. [30] proposed a co-
operative multi-agent deep reinforcement learning framework, which
combines task assignment and allocation of limited communication re-
sources to minimize the overall energy consumption and delay.

2.4. Joint optimization

One notable issue of applying ACS, GA or PSO in joint optimization
involving trajectory planning and task assignment is that the algorithm
may enter the deadlock state where one or more tasks wait endlessly
for resources [31]. Hou et al. [32] proposed ACS-based algorithms with
enhanced communication mechanisms to avoid deadlocks. While the
proposed methods managed to reduce the likelihood of deadlocks, they
did not eliminate the possibilities of such undesirable events. Another
effort to overcome the deadlock problem is segmented planning and
reintegration [33], which introduces self-healing mechanisms like In-
Road Repairing and Intersection Repairing. These methods dynamically
recalculate paths and penalize deadlocked routes using a negative re-
inforcement strategy. While this approach effectively avoids deadlocks
and improves reliability, it incurs computational overhead due to fre-
quent evaluations and path adjustments.

Another emerging approach to solving UAV-related planning and op-
timization problems is deep reinforcement learning (DRL) (e.g., [34-
36]). Recently, Tan et al. [11] built a two-layer optimization frame-
work by combining differential evolutionary algorithms and deep
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reinforcement learning to optimize the UAV deployment, tasks assign-
ment and resource allocation efficiency when participating in multi-
access edge computing. Proximal policy optimization-based deep rein-
forcement learning algorithms were used in [37] to learn the optimal
offloading strategy for dependent tasks in a joint optimization problem
that also involves trajectory planning. DRL-based approaches have been
also jointly applied with other optimization modules in edge computing,
such as blockchain consensus leader election and waiting time window
decision [38], and estimation of resource requirements through digital
twins [39].

Compared with DRL-based approaches, the heuristic algorithms
(such as ACS and PSO) are known to be more scalable, more adap-
tive and less computationally intensive [40]. These advantages make
them particularly well-suited for the dynamic and large-scale nature of
UAV-assisted fog computing scenarios. We will also compare their per-
formance and computational efficiency in Section 6 of this paper.

Our work in this paper combines the techniques mentioned above
that have been demonstrated to be effective in respective processes, in-
cluding FEAR-PID attitude control, ACS-based trajectory planning, and
PSO-based task allocation and resource allocation. Following this foun-
dation, we further improve several aspects of the entire framework, such
as 1) the hardware of the quadrotor is designed to match the efficient
performance of the FEAR-PID control system, 2) two enhanced anti-
lockout mechanisms (decoupling and safety values) in the classical ACS
for trajectory planning, and 3) a modified PSO approach with improved
efficiency that is more appropriate for task assignment and resource al-
location in large-scale UAV-assisted fog computing systems.

3. System model
3.1. Network structure and components

We consider a UAV-assisted fog computing system in a three-
dimensional Euclidean space. The system consists of a quadrotor UAV, a
remote data center (DC) in the cloud, and K mobile IoT devices (MDs).
A demonstration of the key structures in the system is shown in Fig. 1.

EX

Cloud  Fog  loT

Fig. 1. The structure of UAV-assisted fog computing network.

Computer Networks 277 (2026) 112064

The positions of K MDs are randomly distributed according to a Pois-
son Point Process (PPP), with the coordinate of the jth MD denoted
by M ;= [x V2 j]. For convenience, we discretize a continuous time
horizon with length T uniformly into N timeslots, and thus each times-
lot has a length of L = % We assume that N is sufficiently large, or
equivalently, the timeslots are sufficiently short, such that the position
of the UAV can be considered to be fixed within each timeslot. Note
that this timeslot refers to the high-level system decision interval for
task allocation, trajectory updates, and communication resource allo-
cation, rather than the low-level attitude control loop of the UAV. The
attitude control loop typically operates at 100-500 Hz and is handled
automatically by the flight controller, whereas the system-level deci-
sion timeslot in UAV or general mobile edge computing (MEC) systems
commonly ranges from 0.1 s to several seconds and has no direct corre-
spondence with the flight control loop frequency. We use [x(1), y(1), z(t)],
where 7 € {1,2,---, N}, to denote the UAV position at the rth timeslot.
The UAV is powered by a battery with a maximum capacity of B,. The
height and speed are restricted to not exceed z™* and v™**, respectively,
at all times.

We consider that task arrivals from each MD conform to a Poisson
process, with an arrival rate 4 j from the jth MD. We use s; (0, which is
assumed to be exponentially distributed, to denote the data size of the
ith task from the jth MD to be processed at the rth timeslot, and ¢;; to
denote the number of CPU cycles per bit required to process the task. As
we introduced in [10], the proportion of channels allocated to the jth
MD would be based on the Gamma distribution,

Py = 2wt o, M
(a—D!"Y

where a and p are the shape and rate parameters in the Gamma dis-

tribution. For demonstration purposes, we set « = = 2 throughout the

paper.

Given the total number of available channels N, the number of chan-
nels allocated to the jth MD at the th timeslot is C,(t) = [N, - P;(1)]
where [x] rounds x to the nearest integer. The rationale of this arrange-
ment is to prevent the channel from being monopolized by extremely
large tasks, and thus to ensure a certain level of transmission efficiency
for all tasks.

For the ith task from the jth MD, we denote the energy consump-
tion and delay as E;; and D;;, respectively. For each task, the quadro-
tor UAV needs to move sufficiently close to the MD that initiates the
task through a planned trajectory, in order to receive and further pro-
cess the task. As mentioned earlier, a task may be executed locally, in
the fog layer by the UAV, or further offloaded to the data centers in
the central cloud. The computing results of any offloaded task need
to be transmitted back to the initiating MD. In this context, we define
0,1 = (o}.‘;m(t), ogAV(t), ogc(t)) as an array consisting of binary variables
that indicate the specific execution location of the ith task from the jth
MD during the rth timeslot.

For ease of reference, Table 2 summarizes the core notations used
throughout the system model in Section 3; experiment-specific param-
eter values will be provided separately in Tables 5 and 6 in the results
section.

3.2. The controllable structure of a quadrotor UAV

Quadrotor UAVs are capable of achieving six degrees of freedom in
pitch, yaw, roll, vertical, fore and aft, and lateral motion by translating
and rotating along the x, y and z axes. The process is accomplished
by controlling four kinetic input quantities of the motor, denoted by
U= (U, U,,Us, U4)T, and six output control variables that include the
changes of movements v = (Ax, Ay, Az) on the x, y, and z directions, and
the changes of attitude angles A = (A¢, A9, Ay) resulting from rotation
on the three axes.

Specifically, v stands for linear velocity, which is the speed at which
the UAV moves in real space and determines the location and speed
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Table 2
Key notations in the system model.
Notation Definition Notation Definition
Network, Task Assignment, and Resource Allocation-Related Parameters
K The total number of MDs L The length of every timeslot
T The total number of timeslots required (x5 ¥;525) The location of the jth MD
to complete all tasks
(x(1), y(1), z(1)) The location of the UAV at the tth times- v(t) The UAV’s velocity vector at the rth
lot timeslot
d;(n) The distance between the UAV and jth B, The battery capacity of the UAV
MD at the rth timeslot
N; The total number of tasks from the jth N, The total number of wireless channels
MD
C;() The number of channels assigned to the N, The number of UAV propeller blades
jth MD at the ¢th timeslot
A Task arrival rate of the jth MD 5;;(0) Input data size of the ith task from the
jth MD at timeslot ¢
¢ij CPU cycles per bit required for the ith  P;(r) Channel allocation proportion for the jth
task from the jth MD MD (Gamma-based)
a,p Shape and rate parameters in the 0;;(1) Task  execution decision vector
Gamma-based channel allocation (MD/UAV/DC) for task (i, j) at timeslot
t
UAV Dynamics and Propulsion Parameters
m UAV mass g Gravitational acceleration
I.1,.1, Rotational inertia around x, y, z axes i Distance from UAV center to rotor
10) Dynamics input vector (U,, U,, U;,U,)" w;(1) Angular velocity of rotor i at timeslot ¢
R The radius of UAV propeller blades y The mounting angle of UAV propeller
blades
P, P Width and thickness of UAV propeller P pa (), p; (1) The transmission power of the UAV, the
blades DG, or the jth MD at the rth timeslot
Cr,Cy Thrust and torque coefficients of the pro- 0, (1) Yaw-/mounting-angle-dependent coeffi-
pellers cient in the propeller model
Computation and Queuing Parameters
f@®), f;0 The processing frequency of equipment 8,50, Computation-energy coefficients for
for UAV, or the jth MD at the rth timeslot UAV and MD
0 UAV computation queue-capacity pa-  S(f) The weighted sum of network energy
rameter (bit-equivalent) consumption and delay at the rth times-
lot

of the UAV in the map. A determines angular velocities, the attitude
change and the turning speed of the UAV.

According to the Newton-Euler theorem, the nonlinear dynamics
equations of a quadrotor UAV are [43],

X(t) = L U, (?)(sin ¢ siny + cos ¢ sin O cos y)

y(@t) = :i:Ul (1)(—sin ¢ siny + cos ¢ sin O sin y)

1) = iUl (t)(cos pcosh) — g

$() = 1 (10,0 = 0 (1. - 1,)) @
6@ = i(IU_g(t) -y (1, - 1.))

() = 1 (Uy) - 0(1, - 1))

where the left hand side of each equation represents the second order
derivative of the relevant variable with respect to t. I, I,, and I, are
the rotational inertia of the UAV body around its own x, y, and z axes,
respectively. I, and I, are approximated based on the assumption of
structural symmetry of the quadrotor UAV. Meanwhile, / is the distance
from the center of mass of the body to the center of the rotor, which is
also equal to half of the airframe wheelbase.

Fig. 2 shows the schematic diagram of a quadrotor UAV in motion.
Two pairs of motors (M 1, M4) and (M2, M 3) rotating in opposite direc-
tions are used to eliminate counter-torque. Moreover, m is the mass of
the UAV. g is the acceleration of gravity, I,, I,, and I, are the rotational
inertia of the UAV body around x, y, and z axes, respectively. In Fig. 2,
subscripts e and b denote the earth (inertial) frame and body frame, re-
spectively; the corresponding coordinate axes are denoted as (x,, y,., z,)
and (x,, y,, z,). These axes correspond to the translational directions as-
sociated with the variables x, y, z in (2).

The input and output quantities interact with each other to change
the UAV motion by adjusting the rotational speed of the four rotors
(propellers). The thrusts F;(¢), (i = 1,2,3,4) provided by the motors are
directly proportional to the square of the angular velocity of the rotors
(propellers) of the corresponding motors w; (), (i = 1,2, 3,4), namely,

Fi(1) = Cr(to,(H%, 3)

where Cy(7) is the thrust coefficient of the propellers. The torque rep-
resenting the magnitude of the torque to overcome the air resistance is
given by

M, (1) = Cpp (D, (1)?, “

with C,,(?) as the torque coefficient.
For more details on principles related to attitude control and the
calculation of the dynamics input U, see A.

3.3. Rotor propeller design of quadrotor UAV

The design and performance modeling of multirotor UAVs, includ-
ing propeller configurations and power systems, have been extensively
studied [44,45]. We now introduce the factors that would affect Cy(z)
and Cy,(1). The propeller is the power source of the UAV. Fig. 3 shows
the structure of the quadrotor UAV propeller, where the propeller ra-
dius R refers to the sum of the blade length r and the radius of the
mounting interface r,. The blade mounting angle is the angle between
the propeller blades and the plane of the UAV airframe, denoted by
y. Along with the blade width P,, thickness P,, we define the torque
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0
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Fig. 2. Schematic diagram of a quadrotor UAV in motion, where subscripts e and b denote the earth and body frames, respectively, and (x,, y,, z,) and (x,, y,, z)

denote their coordinate axes associated with the translational directions x, y, z.

|:| Airframe horizontal plane
I:I Propeller horizontal plane

Fig. 3. Schematic of quadrotor UAV propeller hardware.

coefficient as,

(%) rut02Ry

Cy=2R-Cp()= ———~F
N [ PP,0,(0dr

6]
where Ny is the number of propeller blades, and Q,(7) is determined
by the propeller blade mounting angle and yaw angle in the current
state. The power loading and disk loading characteristics of propellers
significantly influence the overall energy efficiency [46]. p,(7) is the air
density determined by the atmospheric pressure at the location of the
UAV and the absolute temperature, specifically,
Pg -M p

R, -0(1) ©

po(1) =
where P, is the standard atmosphere, M, is the molecular weight of
gas, R, is the gas constant, ©(7) is the outside ambient temperature, z(t)
is the height of flight at the location of the UAV, and M, and R, are
constants in the ideal gas state.

The values of propeller radius R and airframe wheelbase 2/ need to
be set properly, in order to avoid collisions between neighboring pro-
pellers and underpowered situations. We illustrate the structural rela-
tionship in Fig. 4. In a symmetrically structured quadrotor configura-

tion, the diagonal separation distance between neighboring propellers
is \/51, and the total width of the two propellers (2R) must be less than
this distance to avoid collision, namely 2R < \/EI. On the other hand,
a too small R (less than //3) will not provide enough lift for the UAV
according to (3). Thus, there is a constrained relationship between R

and /, namely ‘/751 >R> %l.

3.4. Transmission model

We define a tuple (m,n) to represent a transmission from m to n,
where m and n can be j € {1,2,---, K} (representing the jth MD), u (the
UAV), or D (the DC).

We consider ¢; to be a parameter determined by the carrier frequency
/. and obstacle density, corresponding to the proportion of the Line of
Sight (LoS) path obstructed between the jth MD and the UAV, while the
elevation angle of the link is 6;.

In our deployment, the communication antenna of the UAV is
bottom-mounted, and the MDs are always located on the ground sur-
face. Therefore, the UAV always maintains a higher altitude than all
MDs, ensuring that no geometric airframe shadowing occurs. The aggre-
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Fig. 4. Propeller radius in relationship to wheelbase for quadrotor UAV.

gated blockage effects—including terrain and man-made obstacles-are
modeled through a parameter ¢;, as defined in the following equation.

The probability to establish a LoS connection between the jth MD
and the UAV is,

1
PLOS(1) = : @
! L+ exp (=(0;, =)
The Signal-to-Interference-plus-Noise Ratio (SINR) for (m,n) at the
tth timeslot is,

()
Ll ® - (Igny @ +02)

where p,, (1) is the transmit power of node m at the rth timeslot. We de-
note by P(LOS (7) the LoS probability of link (m, n), which equals PJLOS(t)
for MD-UAV links and is set to 1 for the UAV-DC backhaul link for sim-
plicity. £, ,(#) = P (1) - ( ”c < d(m_,,)(t)> is the path loss, ¢ and d,, (")

f(m,,,)(l) = (8)

(m,n)

stand for the speed of light and the distance between m and n, respec-
tively. Here, I, , (1) denotes the aggregate external interference from
concurrent transmissions outside our UAV-assisted fog network, which
we model as additive noise for simplicity. o% is the thermal noise. Our
transmission model assumes orthogonal channel allocation within the
UAV-assisted network (via the channel allocation mechanism in Sec-
tion 3.1), which ensures negligible co-channel interference among the
K MDs communicating with the UAV. This simplified interference mod-
eling approach is standard in MEC and fog computing literature, where
detailed multi-cell interference coordination would require additional
coordination mechanisms and is considered as future work.

We can then obtain the effective transmission rate for (m, n) at tth
timeslot as,

r(m,n)(t) = I/V(m,n) 10g2 (1 + é(m,n)(t))’ (9)

where W, , is the bandwidth of the wireless link.

3.5. Energy consumption model

We consider that the total energy consumption includes the con-
sumption for the transmission and computation during the task offload-
ing process, as well as those for the movement of the UAV. Hereafter,
we use the binary variables o%”)(t), o};AV(t), and ogc(t) to specify the as-
signment of the ith task from the jth MD at the rth timeslot. A value of
1 indicates that the task is assigned to the corresponding location.

3.5.1. UAV movement

We consider that the motion state of the UAV is directly related to
the rotational speed of the four DC motors. The energy consumption for
UAV movement is highly dependent on the payload and flight character-
istics [45,47,48]. Thus, the energy consumption due to UAV movement
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at the rth timeslot is,

4
EMOV(t)=Z In)- L) Z( —oiOF, L>, (10)
i=1

where I;(7) is the motor current, which can be calculated by (A.2) and (2)
given that U and w;(1)(i = 1,2, 3,4) (the linear speed of ith motor rotation
(r/min) at the rth timeslot) are obtained by our proposed attitude control
method. V,, is the motor rated voltage, R, is the rated resistance of the
UAV motor circuit, and P, is the electric potential constant determined
by the motor structure.

3.5.2. Energy consumption for transmission

If a task is assigned to the UAV, two segments of transmission will
be incurred, namely from the MD to the UAV and the UAV back to the
MD. On the other hand, if a task is assigned to the DC, two additional
segments, namely from the UAV to the DC and from the DC back to the
UAV, will be incurred. Therefore, energy consumption at the ¢th timeslot
for transmitting the ith task from the jth MD is,

TR, _( UAV DC pj(t)sij(t) pu(t)sij(t)
i (t)_<oij O+ (I)><Cj(t)r(j¢u)(t) CiOrg,p)®

+0].).C { ( pu(t)sij(t) pD(l)sij(I) )
CiOrw.p)®  C;Orp,®

1D

where C;(¢) is the number of channels assigned to the jth MD.

3.5.3. Energy consumption for computation

We consider that the additional energy consumption for computing
a finite number of tasks in the DC is negligible as the DC is assumed to
be always active in processing tasks from different sources. Therefore,
the energy consumption for computing ith task of the jth MD can be
obtained by

COMP(1) = oUAV (08, 5,; (1)c,; (f (1) + oMP(038 5, (1)ey; (£;) (12)

where §, and §; are the computation-energy coefficients (unit:
J/(cycle?-bit)) for the UAV and the jth MD, respectively. Specifi-
cally, 6, =1.2x 1072 J/(cycle-bit) for the UAV and &, = 3.0x 10728
J/(cyclez-bit) for MDs, where the higher value for MDs reflects their
weaker hardware efficiency.

3.5.4. Overall energy consumption
Based on the discussions above, the overall energy consumption at
the rth timeslot can be expressed as,

EQ®) =Z

=

=z

[ TR() + eS.OM(t)] + EMOV(p), (13)

where N, is the total number of tasks the jth MD.

3.6. Delay model

We consider three delay components: transmission, computation,
and queuing.

3.6.1. Transmission delay
The transmission delay for the ith task from the jth MD at the rth
timeslot is,

(@ 5;;(0)
dTR (1) = oPC ( al y >
ij (1) 01/ @) Cj(t)r(u,D)(t) Cj(t)r(Dﬂu)(t) a4
UAV DC 530 5;;(t) >
+ ("f/ O +0; (t)) <Cj(t)r< @ C O, ®
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3.6.2. Computation delay

The delay for computing the ith task from the jth MD can be ex-
pressed as,
5(0¢;  wp i

o u ;07

where f(r) (unit: GHz) denotes the UAV’s processing frequency, bounded
by f™" = 1.0 GHz and f™* = 3.0 GHz, representing a high-performance
onboard processor. Similarly, f;() (unit: GHz) denotes the jth MD’s
processing frequency, bounded by J"" =05 GHz and J"* =20 GHz.
The UAV distributes its processing frequency f(f) among all assigned
tasks according to the joint optimization algorithm, which minimizes
the overall weighted energy—delay cost. Thus, resource allocation is im-
plicitly determined by the solution of the optimization problem rather
than by a fixed scheduling rule.

Note that as the computing resources at the DC are sufficient for all
practical purposes, we assume that the computation delay at the DC is
negligible.

dSOMP(t) = o}jAV(z) (15)

3.6.3. Queuing delay

We consider two types of queuing delays: transmission queuing and
computation queuing. Transmission queuing occurs when the arrival
rate exceeds the communication service rate, while computation queu-
ing occurs when the aggregated task workload exceeds the UAV’s effec-
tive computing rate.

Our queuing model adopts an M/M/1-type abstraction, which is a
standard first-order modeling approach in MEC literature for captur-
ing queuing behavior under stochastic task arrivals [49,50]. This ab-
straction enables tractable analysis while providing reasonable approx-
imations of system performance under moderate to high load condi-
tions. While more detailed queueing network models (e.g., multi-server
queues or priority-based scheduling) could offer finer granularity, they
would significantly complicate the optimization problem formulation.
Our simplified model remains compatible with such extensions, which
could be incorporated as future work when detailed scheduling policies
are required.

Consider that the arrival rate for transmission from the jth MD to
UAV is 4;, and the processing rate at the UAV for receiving transmissions
iS[L-C;(t)-r;,(D]/s;@), where 5;() = Zfifl 5;;(f) is the sum of tasks data
size from that MD. Let #; denote the probability that an arriving task
from the jth MD does not enter the transmission/computation queue
(e.g., executed locally), so the effective arrival rate is 4;(1 — x;). If the
total arrival rate is larger than the processing rate, a queuing delay for
transmission will be incurred [42], that is,

A(1=m;)s;@7
L-C;(0r;, 0 - (L-C;0r; ()= A;(1 - x;)s;(1))
Similarly, if the total sizes of arriving tasks exceed the computation ca-
pacity of the component, queuing delay for computation would be in-

curred for a proportion of the tasks. The expected queuing delay of the
ith task from the jth MD executed at UAV at tth timeslot is,

d3(n = e

- K
™) = Q o A (1= 7;)s;(0c

- , a7
TiA(l=m)  cf X 4(1-x))

where O = 5 x 107 (unit: bit-equivalent) is a queue-capacity parameter
representing a queue threshold corresponding to the UAV’s onboard
computing throughput, and = = 1 s is a normalization constant that nor-
malizes the aggregated computational workload into an effective service
time per task.

3.6.4. Total delay
The total delay is obtained by summing all delay components men-
tioned earlier, that is,

K Nj
D() = Z‘; 2{ <dl.TjR(t) +dSOMP () + d}jAVQ(z) + dS(z)). (18)
Jj=1i=
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Congestion in the network manifests through the growth of queue
lengths, which directly contributes to the queuing delay components
dS(z) and dl.lj.AVQ(t) in the total delay expression. Since our objective
function minimizes the weighted sum of delay and energy consump-
tion, congested conditions (characterized by increased queuing delays)
are implicitly penalized. This approach eliminates the need for an ex-
plicit congestion metric, as the optimization naturally steers the system
away from congestion-prone configurations to minimize the overall op-
erational cost.

4. Joint optimization problem

We consider that the operational efficiency cost of the network is
determined by the weighted sum of the energy and delay components.
Therefore, our objective function consists of the energy consumption de-
fined in (13) and the time required to complete all tasks defined in (18),
during the entire period of T, as follows.

T

Min S = Y [D@) + € - E@)]
{0 (V. (D]1E(0,-.T ) ,;0

s.t. 1) oMt <o) < 0™, Vi
) 0<v@)] < o™
) 0<z(t) < zmax
; T GO <N,

s) ST @ <
) S fn < 19
) P <) < P
) PP < p(n) < P
) PO+ o0 + D¢ =1

Cio) 0P, oMV (1), 00 (1) € {0, 1)

Ci) T (A1) < B,

ie {1,...,Nj},j e{l,...,K}

The decision variables include the angular velocities w;(r) related to
attitude control, the velocity vector v(¢) for trajectory planning, and task
assignment decisions o;;(#). The parameter ¢ is a weighting factor in the
objective function, which flexibly caters to different magnitudes and
ranges of the two measurements, as well as reflects the preference in
terms of the trade-off between the two metrics in various fog computing
scenarios. We will demonstrate in the result section that our proposed
approach can achieve high performances for a wide range of ¢ values.
In terms of the constraints, C; to C, are constraints imposed by the hard-
ware limitations of the respective components. 5 to (g ensure that the
processing frequency and transmission power of UAV and MDs are al-
ways within the effective range. Cy and C,, guarantee that every task
is executed at exactly one place at any moment (no duplicate comput-
ing). C;; restricts that the total energy consumption of the UAV during
T does not exceed its battery capacity, as EYAV(¢) denotes the energy
consumption of the UAV at the rth timeslot,

K N;
. (0s;;(0)
EYAV() = EMOV(r) + [o?c(t) < p“—”>
; Z:‘ ! Cj(t)r(u,D)(l) (20)

1)s;(t
+o}jAV(z)<M + 8,5, (e ( f(z))2>].

Cir @ Y

Note that the processing frequencies f (), f (1), and transmission pow-
ers p, (1), p;(?) are dependent on the decision variables o,;(r). Numerous
scholarly works (e.g., [42]) provided comprehensive analyses of these
intricate interactions.

5. Algorithms

The problem (19) possesses an intrinsic nonconvex nature. We divide
the problem into three subproblems, one focusing on controlling the
attitude, the second on generating an initial trajectory and altitude, and
the other on task assignment and resource allocation, as well as further
tuning the trajectory, respectively.
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Table 3
Initial fuzzy PID control rules.
NB: Negative Big (-3) NM: Negative Middle (-2) NS: Negative Small (-1) Z0 (0): zero
PB: positive big (3) PM: positive middle (2) PS: positive small (1)
EC
E NB NM NS PS PM PB
Ak,/Ak/Aky,  Ak,/Ak/Ak,  Ak,/Ak/Ak,  Ak,/Ak/Ak,  Ak,/Ak/Ak,  Ak,/Ak/Ak,  Ak,/Ak/Ak,
NB PB/NB/PS PB/NB/NS PM/NM/NB PM/NM/NB PS/NS/NB Z0/Z0/NM Z0/Z0/PS
NM PB/NB/PS PB/NB/NS PM/NM/NB PS/NS/NM PS/NS/NM ZO/ZO/NS NS/PS/ZO
NS PM/NB/ZO PM/NM/NS PM/NS/NM PS/NS/NM Z0O/ZO/NS NS/PM/NS NS/PM/ZO
Z0o PM/NM/ZO PM/NM/NS PS/NS/NS Z0/Z0/NS NS/PS/NS NM/PM/NS NM/PM/ZO
PS PS/NM/ZO PS/NS/ZO Z0/Z0/Z0 NS/PS/ZO NS/PS/Z0O NM/PM/Z0O NM/PB/Z0O
PM PS/7Z0/PB Z0/7Z0/PM NS/PS/PM NM/PS/PM NM/PM/PS NM/PB/PS NB/PB/PB
PB Z0/Z0/PB Z0/Z0/PM NM/PS/PM NM/PM/PM NM/PM/PS NB/PB/PS NB/PB/PB

5.1. Attitude control

5.1.1. Classical PID control
The classical PID control algorithm is a widely used algorithm for
UAV attitude control [13]. It considers the following three control parts:

e Proportional control (P): the error of the controller input is amplified
by a certain proportion. This constitutes the basic control part;

e Integral control (I): an integral term is introduced for correction of
the proportional control to maintain the system stability. Its coeffi-
cient will approach 0 as time goes by;

Differential control (D): a differential term based on the rate of
change of the input error is added. The purpose is to improve the
response accuracy by predicting the future trend of the input error.

The classical PID control is described by the following equation,
U®) = kye(®) + k; / e()dt + kdé(t)dt, 21)
e

where k,, k; and k, are the proportional, integral and differential co-
efficients, respectively. The output of the PID control system, U (t), will
affect w, 0, ¢, y, which will in turns have an impact on the power con-
sumption of the UAV (see Section 3.2 and A for details).

5.1.2. Fuzzy PID control

The fuzzy PID control algorithm improves on the classical PID con-
trol by adding nonlinear adaptive capability through Fuzzy Set The-
ory [14,15]. By inputting fuzzification and a set of fuzzy rules, the PID
gain is dynamically adjusted according to the current error E and the
error rate EC. In addition, the coefficients k,, k;, and k, are no longer
constants, enabling them to adapt to environmental changes. However,
since the fuzzy rules are preset based on expert knowledge, the con-
troller lacks flexibility in adapting to unforeseen complex environmental
changes in real time [17].

5.1.3. FEAR-PID control

To solve the above problems, we propose the Fuzzy-Enhanced Adap-
tive Reinforcement PID (FEAR-PID) controller. FEAR-PID integrates RL
in fuzzy PID to provide an additional adaptive layer. The control process
of FEAR-PID is demonstrated in Fig. 5. Specifically, the initial control
strategy is first provided by fuzzy logic based on expert knowledge. The
specific rules are shown in Table 3.

Then, the PID gain coefficients in the fuzzy controller are obtained
by a Double Deep Q-Network (DDQN). The RL module continuously op-
timizes the PID gain coefficients based on real-time feedback, thus effec-
tively adapting to the dynamic environment and improving the control
effect. The RL agent in FEAR-PID is designed as follows:

e State: The state S, at timeslot ¢ consists of the E, EC, and
the PID coefficients Ak, Ak;, and Ak,. Represented as S, =
[E, EC, Ak,, Ak;, Akg].

e Action: The action A, = [Ak,, Ak;, Ak,] represents the adjustments
made to the PID coefficients at each step, resulting in updated PID
gains,

ky_rear =k, + Ak,
ki_rpar = ki + Ak; (22)
ky_rEaR = kg + Dky.

Reward: The reward function R, is designed to guide the controller
toward minimizing the control error and achieving stable responses.

R, = —<19||E| +39,

%' 495 AU+ 9, - Y) ©23)

where the absolute error |E| aims to minimize the error. The term
‘%| controls the rate of error change for stability, AU? captures
control output variation, incentivizing smoother adjustments, AND
Y denotes the overshoot penalizing excessive responses and aids in
maintaining stability. The weights 9,,9,, 95, and 9, are provided to
balance accuracy, convergence speed, stability, and control smooth-
ness. The specific values and ranges of relevant parameters summa-
rized in Table 4.

5.2. Task assignment and resource allocation

An overview of the steps in our proposed framework to address the
task assignment, resource allocation and trajectory planning modules
in the joint optimization problem is shown in Fig. 6. We will apply an
Ant Colony System based algorithm (Algorithm 2, to be described in
detail later) to determine an initial trajectory based on the terrain of
the area and the position of MDs. Then, the attitude control mecha-
nism described in Section 5.1 will be invoked to determine the as well
as tune the trajectory. Finally, a Particle Swarm Optimization based al-
gorithm (Algorithm 1, which was initially proposed in the conference
version [10]) will determine the optimal task assignments and resource
allocations. We will also analyze the convergence performance of the
proposed algorithms at the end of the section.

We first introduce an algorithm based on the idea of Particle Swarm
Optimization (PSO), for assigning tasks and allocating resources given
that the trajectory is already known. The steps of our proposed algo-
rithm are demonstrated in Algorithm 1, which we refer the readers to
the conference version of this paper [10] for more detailed explanations.
We categorize the job assignment decision, transmission power, and pro-
cessing frequency as a collective entity s, = (0;;, p;(#), f;(#)) within the
particle swarm. Here, h € {1, ..., H}. Next, the determination of the par-
ticle group’s position is carried out by uniformly sampling a set of par-
ticle groups denoted by H € N,. In order to search for the optimal so-
lution, the velocity of the particle groups is initialized and subsequently
updated using the method in [51]. The algorithm terminates when the
discrepancy between the outcomes of 20 successive rounds is less than
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Table 4
FEAR-PID parameter settings.
Parameters Values Parameters Values Parameters Values
-6, -5, -4, -3, -2, -1, -3,-2,-1,0, -1.5,-1,0,
E, EC 0,1,2,3,4,5,6 ] 1,2,3 Ak 1,15
9, 3 9, 0.5 95,9, 1.5
Adaptive RL(DDQN) Gain Tuner
oo . "
» Fuzzification Establishment Initial Fuzzy
{ of input of fuzzy rules reasoning
Defuzzification of output & ] RL gains
Experlence based policy refinement optimization
— de/dt = 5
1
Akp Ak,- Ak,
y 4
Desi .
ired U, >
Euler
Angle UAV
T Attitude
= DEA Error (E) —» k; f e(ndr *| Propellers | U,
_ = Control
=DEA - PEA Angular
gular Ly.+ Module
Velocity
PEA dt Controller |y,
PID Attitude Controller

Practical Euler Angle

09,9,
T,h

Sensors

Fig. 5. Schematic structure of FEAR-PID control system for UAV.

a specified threshold 9, and then outputs the minimal value S*, the op-
timal decision for job assignment ofj, the transmission power p;f(t), and
the processing frequency fj?“(t).

Regarding fairness considerations, we note that fairness is not ex-
plicitly included as an optimization target in our objective function,
which focuses on minimizing overall energy consumption and delay.
However, our system design incorporates natural fairness mechanisms
through orthogonal channel allocation (preventing channel monopoliza-
tion) and the feasibility constraints that ensure all tasks are assigned to
appropriate execution locations. The Gamma-based channel allocation
strategy further promotes equitable resource distribution by preventing
extremely large tasks from dominating available channels. A compre-
hensive quantitative fairness analysis, including metrics such as Jain’s
fairness index or per-user delay variance, would require additional mod-
eling extensions and is considered as future work for scenarios where
explicit fairness guarantees are required.

5.3. ACS-DS for trajectory planning: motivation and concept

We now present the concept and outlines of the ACS-DS (Ant Colony
System with Decoupling and Safety values) algorithm to generate the
optimal UAV trajectory to minimize EMOV. Then, we will prove that
ACS-DS always converges to the optimal solution in polynomial time in
subsequent subsections.

We first divide the 3D space into discrete grids, with the center of
each unit of the grid serving as a waypoint, that is, the position that the
UAV will pass. The 3D terrain is generated randomly, and we denote

10

the area at and below terrain surfaces, referred as the no-fly zone, by
O = {(x2,%,2°)}, where n € {1,2,...,N,}, and N, is the total number
of grids in the no-fly zone. Note that the classical ACS is not applicable
to our three-dimensional trajectory planning problem as it struggles to
converge in path searching in large three-dimensional spaces, and is
likely to be trapped in local optima.

To overcome these issues and obtain the optimal trajectory with min-
imum cost in an efficient manner, we propose the ACS-DS, by incorpo-
rate the two special mechanisms to the classical ACS. We now elaborate
these two mechanisms.

5.3.1. Safety values

We enhance the heuristic function of the ACS-DS by adding a security
value at each step based on the number of currently known the num-
bers of feasible and infeasible waypoints. Specifically, we determine the
safety value of a waypoint based on the proportion of known feasible
waypoints in the next available position for that waypoint. The safety

value from waypoint u to v is calculated as «,,, = -, where N, de-

notes the total number of waypoints in a preset constant range [0, R,],
and N, denotes the number of infeasible waypoints in the range of N,
over direction from u to v. Safety values are updated using a similar
rule to pheromones, and when choosing its next move, the ant would
add the safety values to the pheromone levels for all possible actions.
We will show in the results section that this method can reduce the run-
ning time and improve the operation efficiency compare to the classical
ACS algorithm.
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Fig. 6. A flowchart demonstration of the components in our proposed framework.

Algorithm 1 Task assignment, power and frequency allocations based
on particle swarm optimization.
Input: The length of an interval ¢, p;?m(t); p;"i"(t); f;“a"(t); fj"‘i"(t); Fyuy5
Fpo; Fy
Output: S*(1); of;; p;(®); [} (1)
1: for h=1to H do
2 Initialize particles’ positions G,
3 Initialize particles’ velocities V),
4: Initialize pBest;, «— G,
5
6

: end for

: Initialize gBest(0) «— argminfit(pBest,), where fit represent the
equation to compute S*(¢); k = 1

: forh=1to H do

Update V,, and G,, by acceleration factors F,,, F4, and F;

9: if fit(G,) < fit(pBest,) then

© N

10: pBest, «— G,

11: if fit(pBest,) < fit(gBest) then
12: gBest(k) «— pBest,,

13: end if

14: end if

15: ke (k+1)

16: end for

17: while |gBest(k + 1) — gBest(k)| < 0 do
18: S*(t) «— fit(gBest)

19: (oj‘j; p;.‘(t); fj*(t)) «—— gBest

20: end while

21:

Output S$*(1); (07; p;(1); f7 (1)

5.3.2. Decoupling

In ACS, when an ant reaches a point with no further viable options,
it becomes trapped in a deadlock. To address this issue, we introduce
a mechanism that allows the ant to escape the deadlock. Specifically,
when any of following rule is satisfied during the ant’s movement, the
Decoupling mechanism will be triggered to perform a backtracking be-
havior with depth (step size) D, to find alternative directions:

e An ant repeats a closed cycle consisting of two or more waypoints
over multiple consecutive timeslots.

¢ Asudden drop in the amount of pheromone and safety values occurs,
as indicated by the fact that the « of the currently selected waypoint
is less than half that of the previous waypoint.

v K

Data Center (DC)

¢ An ant falls into a local optimum and undetected in the early stage,
that is, the ant has not triggered backtracking behavior for more than
25 consecutive waypoints in the first one-third of all iterations.

It is worth noting that the third rule is only considered in the early
stages of the algorithm (first one-third of all iterations) to avoid exces-
sive backtracking that reduces the convergence speed of the algorithm.
This mechanism, by dynamically adjusting the pheromone levels and al-
lowing the ant to backtrack and explore new possibilities, ensures that
the ACS-DS remains robust and capable of finding optimal trajectories
even in complex and challenging scenarios.

5.4. ACS-DS: Detailed steps

We let m be the total number of ants in the colony, and ¢ = Vp + « be
the guidance factor. We further denote ¢, (h) as the sum of pheromone
values and safety values between the neighboring waypoints yx and v
in the hth iteration. The initial pheromones on each edge are equal,
namely ¢,,(0) = C for all 4 and v. We denote by s* the global best path
obtained by the algorithm, corresponding to the minimal-cost trajectory
in our UAV optimization problem. Next, for each ant k € {1,2...,m} in
the colony, we initialize the pheromone Vp, the safety value «;, and
the heuristic value #. We also define the evaporation rate p € (0, 1) rep-
resenting the degree to which the guidance factor ¢,,(h) decays with
iterations. Finally, we define &, as the set of waypoints that ant : can
pass next, and P, (h)as the probability that ant : moves from position u
to v in the hth iteration. The exact value of p;l ,(h) is jointly determined
by the guidance factor and heuristic value at the waypoint, as in the
following equation,

o, (M, P (h)
L veS,
P, () = 3 Zres, olrm "B ' (24
0 otherwise.

Detailed steps of ACS-DS are presented in Algorithm 2.
5.5. ACS-DS: Proof of convergence
We now prove that Algorithm 2 will eventually converge, starting

by the following proposition.

Proposition 1. In Algorithm 2, for the guidance factor o, on any edge
(u, v) generated by the ants during the searching process, there exists a max-
imum value g(s*) as h — oo.

11
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Algorithm 2 ACS-DS: ACS-based trajectory planning with decoupling
and safety values mechanisms.
Input: Positions of all MDs (x;,y;, z,);p; 1; Vpo; Ko; terrain sur-
face with no-fly zone (x%,°,z%) € O
Output: EMOV*(r); Trajectory of the UAV (x,(?), y,(?), z,(1))
1: forh=1to H do
2 Randomly set the initial coordinate of the UAV,
(x(0), ¥(0), z(0))

3: while (x(0), y(0), z(0)) ¢ O do
4: for each edge do
5: Set initial pheromone, and calculate the initial

safety values

6: end for
7: for each ant : do
8: (x,(h), y,(h), z,(h)) = (x(0), ¥(0), z(0))
9: for each edge (u,v) do
10: Choose the next coordinate with probability

p,, (b by ¢ and

11: while (x,(h + 1), y,(h+ 1), z,(h+ 1)) ¢ O do

12: Output (x,(h + 1), y,(h + 1), z,(h + 1))

13: end while

14: end for

15: Compute and output the length Z,T:] d, @) of the
path by the ith ant and E,

16: for each edge (u,v) do

17: Update Ve, and «,, by p

18: Update o,,(h) by V;, and k,,

19: end for

20: end for

21: end while

22: end for

23: Compute and output EMOV*(¢) by (10).

Proof. For ACS-DS, the local update of the guidance factor for edge
(u, v) after the completion of each round of iteration can be represented
as o, (h+1)=(1-¢) 0, +¢-Ac,, (h), while the global guidance
factor is updated in a similar way, that is, c(h+ 1) =(1—¢)-6(h) + ¢ -
Ac(h). Here, Ao, (h) = 0,,(h) — 6,,(h — 1) is the increment of guidance
factor on edge (u, v) at the hth iteration.

o,(D=>10-9¢) 06,0 +¢-Ac,,©0)

o =10=¢) 0, 0+0-p)"" ¢ Ac,, 1)+
+(1-9)-@-Ac,(h—1D+¢-Ac,,(h)
A (25)

(1=@)"-9-Ac,(@+1-¢)0,,0)

q=1

h
o (W) = Jim <Z ((1=9)'"" g Ao, (@) + )>

q=1

= g(s*) < 0.

Thus, the guidance factor on each edge is bounded from the above
by g(s*). O

After the first optimal solution is found, the guidance factor on the el-
ements belonging to an optimal solution is guaranteed to be no less than
that on other elements as we have a sufficient number of subsequent
generations. That is, the guidance factor on any element not belonging
to an optimal solution will keep decreasing until it is no larger than the
guidance factor on the elements belonging to an optimal solution. In
mathematical terms, we have the following corollary.
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Corollary 1. As h — oo, itis always true that ,,,(h) 2 6,4, (h), if (u,v) €
s* and (u',V') & s*.

Proof. Suppose it takes h* generations to find the first optimal solu-
tion. We assume that for a certain (u, v) € s*, there exists a (4, V') & s*,
0, (h*) < 0, (RF). Then, based on the guidance factor update rule in
ACS-DS, by the ~* + h' generation, the guidance factor on (4/,V') can be
derived as

Oy (1 + 1) = max {0, (), (1 = )" - 0,0, (") | (26)
Therefore,
Jim 0, (0 4+ 1) = max Jim { o, (h7). [(1 =0 - 0, (n7)] }
(27)

= max {aw(h*), 0}
<o, (h")
O

Proposition 1 and Corollary 1 jointly prove that, after a sufficient
number of iterations, the guidance factor on an optimal path is bounded
and no less than those on other paths. Noticeably, the backtracking be-
havior caused by the decoupling mechanism in ACS-DS will only in-
crease the number of iterations for the current waypoint, but does not
affect the updating of the guidance factor and the convergence to the
optimal solution as in the original ACS. Therefore, the ACS-DS algorithm
always converges to the global optimal solution.

5.6. ACS-DS: Complexity analysis

We now analyze the complexity of Algorithm 2 when a total of n
users initiate computation requests in the current timeslot. Assume that
in the worst case, Algorithm 2 triggers backtracking at every waypoint
for each ant upfront, the path construction time complexity for m ants
is O(m - n?). The complexity of each update of the guidance factor, and
each calculation of the transfer probability is O(n?). If the algorithm
is finished after H iterations, the complexity of the entire algorithm
is O(H -m-n*+ H - n?). Since the magnitude of m is similar to n, the
complexity of the ACS-DS algorithm in completing all the tasks of the
network is approximately O(H - n3), which means that Algorithm 2 has
a polynomial time complexity.

6. Performance evaluation

We now present numerical results to assess the efficacy and versatil-
ity of our proposed solutions.

6.1. Experiment setup

We consider a three-dimensional spatial domain with dimensions of
S xS x Z. We randomly generate a continuous surface (no-fly zone)
within a three-dimensional spatial domain as shown in Figs. 7a and 7b,
and consider that K MDs are placed on the ground conforming to the
terrain height, with their positions uniformly and randomly distributed
in the space. All MDs are placed at the terrain surface height, and the
UAV always operates at an altitude higher than the MD elevations. The
values of key system parameters are listed in Table 5.

The UAV flight time 7 is obtained by cumulatively summing the
propulsion energy consumed at each timeslot, where the energy usage
is determined from the rotor-speed-dependent motor model already de-
fined in Section 3.2. The endurance is reached once the accumulated
consumption equals the battery capacity B,, giving the maximum fea-
sible T under a given trajectory and control strategy. Specifically, T is
calculated as:

t
T:max{teN : ZEUAV(T)SBC},

=0

(28)
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(a) Side view
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(b) Top view

Fig. 7. Trajectories planned by different mechanisms on a 3D spatial domain. The terminal point shown in Fig. 7 represents the UAV’s final hovering location for

sustained communication rather than the physical position of the MD.

Table 5
Values of key system parameters.

Parameter ~ Value Parameter Value

50,000 m z 3000 m
L 0.1s € [0.05, 1.00]
m 50 kg a 5.28 m/s?
g 9.81 m/s? ! 1150 mm
K 50 R 512 mm
N, 40 P, 7.5 mm
Ng 2 P, 250 mm
B, 5000 Wh I, 5.5
ymax 15m/s 1, 5.5
Zmax 2500 m I, 10.0
™" 200rpm o™ 5000 rpm
Cr 1.483 (N-m-min®)/r>  Cy 2.925 (N-m-min®)/r?
M, 29 g/mol R, 8.314 J/(mol * K)
T 20-35min N, 1-5
fmm 1.0GHz fma 3.0GHz
f;“‘“ 0.5GHz fj"“" 2.0GHz
3, 1.2x 1072 J/(cycle?-bit)  §; 3.0 x 10728 J/(cycle?-bit)
0 5% 107 (bit-equivalent) T 1.0s

Table 6
Values of key algorithmic parameters.

Parameter ~ Value Parameter ~ Value Parameter Value

P 025  Vp 3.8 " 2.5
Fyy Fio 2.0 F, 0.65  R..D, 200 m

where EYAV(7) is defined in (20) and includes both movement energy
EMOV(7) defined in (10)) and other energy consumption components.
Values of key parameters used in the algorithms described earlier in
this paper are listed in Table 6. All experimental results presented in
this section are based on the average of the 50 independent runs with
the weighting factor ¢ randomly generated within its domain for each
run.

For the task assignment and resource allocation part, we adopt PSO
(Algorithm 1), which has been demonstrated effective and robust in
our earlier conference paper [10], for all experiments in this section.
For the attitude control and trajectory planning modules, we focus
on evaluating the performance of our proposed ACS-DS (Algorithm 2)
and ATC (Section 5.1). Note that our work addresses a joint UAV
control-communication—computation optimization problem, which fun-
damentally differs from traditional networking-only scheduling tasks.
Conventional networking baselines such as Round Robin, Proportional
Fair, or queue-based schedulers cannot operate in our setting, as they
assume fixed infrastructure and do not interact with UAV flight dynam-
ics, propulsion energy, or real-time orientation-dependent channel vari-
ations. These classical methods also do not model UAV physical con-

straints, motor-level energy consumption, computation frequency con-
trol, or end-to-end latency decomposition, all of which are essential
components of our optimization problem. Therefore, consistent with the
standard practice in the UAV-assisted MEC and cross-layer optimiza-
tion literature, we adopt representative algorithmic families that can
jointly optimize continuous control variables and discrete resource allo-
cation decisions. Specifically, we examine the following ten implemen-
tations, including our proposed approach, recently proposed heuristic
(e.g., [12,20]), and RL-based methods [11], and compare their perfor-
mances in terms of overall operational efficiency cost.

e ACS: The trajectory of the UAV is planned using the classical
Ant Colony System (ACS). Task assignment, processing frequencies,
transmission powers, and channel allocation follow the optimization
procedures described in Section 3. No special mechanisms are ap-
plied for attitude control.

GA-SCA: The UAV trajectory is optimized using a hybrid method

combining Genetic Algorithm (GA) and Successive Convex Approxi-

mation (SCA), as proposed in [12]. The remaining parameters follow
the same strategy as ACS.

e CPS-ACO: The UAV trajectory is planned using the Chaotic-
Polarized-Simulated Ant Colony Optimization (CPS-ACO) method,
proposed in [20]. Other system parameters are optimized as in ACS.

e TD3: The UAV trajectory is planned using the Twin Delayed Deep
Deterministic Policy Gradient (TD3) algorithm, as described in
[11,36]. Other configurations are consistent with the baseline setup
in ACS.

e ACS-DS: This is an enhanced version of ACS, where UAV trajec-
tory planning incorporates our proposed decoupling and safety value
mechanisms, detailed in Algorithm 2. Other parameter settings re-
main unchanged.

e CPS-ACO + ATC: Based on CPS-ACO, this method integrates the at-
titude control mechanism described in Section 5.1 to enable more
stable UAV dynamics.

e TD3+ ATC: Based on TD3, this variant incorporates the attitude con-
trol mechanism described in Section 5.1 to improve stability and re-
sponsiveness.

e ACS-DS+ATC: This is the full version of our proposed method,
which combines the decoupled safe trajectory planning in ACS-DS
with the attitude control mechanism in Section 5.1.

6.2. Simulation environments

The experimental evaluation of the proposed framework is con-
ducted using three complementary simulation environments, each de-
signed to address different aspects of system validation and serving dis-
tinct roles in the evaluation pipeline.
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(c¢) AirSim deployment simulation (AirSimNH)

(b) Web-based demonstration

P

o s

(d) AirSim deployment simulation (Mountains)

Fig. 8. Simulation environments used for framework evaluation.

¢ Isaac Sim: This Omniverse/PhysX-based robotics simulation plat-
form provides high-fidelity rigid-body UAV dynamics that accurately
model inertia, thrust, and torque characteristics. As shown in Fig. 8a,
the environment incorporates realistic environmental disturbances
including wind fields, actuator latency, and platform vibration, en-
abling high-fidelity physical verification of control algorithms. We
utilize Isaac Sim to validate the FEAR-PID controller’s stability under
realistic dynamics and to verify that the UAV parameters specified in
Table 5 exhibit physically correct behavior. We additionally lever-
age Isaac Sim’s built-in/official USD environment assets as realistic
scene data for representative outdoor scenarios, so that the controller
is also inspected under non-trivial geometry and terrain context be-
yond synthetic setups. This physics-based validation ensures that our
control strategies and parameter selections are feasible for real-world
deployment.

Microsoft AirSim: This platform offers photorealistic rendering
powered by the Unreal Engine, featuring realistic suburban and
mountainous environments that represent the large-scale outdoor
deployment scenarios described in our system model (e.g., AirSimNH
and LandscapeMountains scenes). As shown in Fig. 8c and Fig. 8d,
the environment provides high-fidelity visual representation of com-
plex terrain with realistic lighting and atmospheric effects. The plat-
form provides comprehensive sensor emulation including RGB cam-
eras, depth sensors, semantic segmentation, IMU, GPS, and realistic
noise models, and also exposes environment controls such as time-of-
day and weather. We employ AirSim to support interactive mission
execution with the built-in multirotor dynamics under deployment-
scale scenes and configurable conditions, and to generate syn-
chronized FPV/chase-view visualizations for representative runs via
ExternalPhysicsEngine (pose-driven) replay, which facilitates consis-
tent presentation and debugging across different methods.
Lightweight web-based demonstration': This accessible interac-
tive visualization tool is inspired by AirSim’s visual style. As illus-
trated in Fig. 8b, the simplified environment employs streamlined

1 https://shuaijun-liu.github.io/UAV-Assisted-Fog-Computing-Simulation-Demo
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UAV dynamics without full rigid-body physics, yet incorporates dy-
namic wind effects, simplified control loops, and procedural terrain
generation. The web demo serves to qualitatively visualize UAV be-
havior, trajectory evolution, and controller stability, offering prac-
titioners and researchers an intuitive understanding of the system’s
operational characteristics without requiring specialized simulation
software.

These three environments complement each other: Isaac Sim vali-
dates physical feasibility and control robustness with high-fidelity dy-
namics and asset-based scenes, AirSim evaluates deployment-scale per-
formance in interactive Unreal Engine environments, and the web
demonstration provides intuitive qualitative insights. Together, they
form a comprehensive evaluation framework that spans from low-level
control validation to high-level mission assessment.

6.3. Module-wise ablation study

To evaluate the individual contribution of each proposed component
in our holistic framework, we conduct an ablation study by selectively
removing one module at a time while keeping the others unchanged.
This experimental design allows us to quantify the performance degra-
dation caused by the absence of specific functionalities and to demon-
strate the necessity of integrating all components for optimal system
performance. We consider the following four key modules:

o FEAR-PID-based Attitude Control (ATC): Enhances UAV stability
and reduces energy overhead during flight maneuvers;

ACS-DS Trajectory Planner: Provides obstacle-aware and energy-
efficient path planning with fast convergence. Determining the op-
erational efficiency costs of the movement;

PSO-based Task and Resource Assignment: Allocates task execu-
tion and communication resources effectively. Determining the op-
erational efficiency costs of tasks computation and unloading.;
Gamma-based Channel Allocation Strategy: Prevents bandwidth
monopolization by larger tasks. Determining the operational effi-
ciency costs of transmission.
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Ablation variants with specific module removals.

Variant Name Description

Full All modules enabled (ATC + ACS-DS + PSO + Gamma)

w/0 ATC Replaces FEAR-PID with classical PID control

w/0 ACS-DS Replaces ACS-DS with TD3 trajectory planner

w/o PSO Uses random task assignment and uniform power allocation

w/0 Gamma Uses uniform channel assignment (P;(r) = 1/K)

Baseline Classical PID + TD3 trajectory + uniform task/power/channel assignment

Each of these modules is removed individually to create a controlled
ablation variant of the full framework. The tested ablation variants are
summarized in Table 7.

For each variant, we use the same network environment and task
configuration as in the full model experiments. All experiments are re-
peated 50 times with randomized task generation to ensure statistical ro-
bustness. The evaluation metric is the overall operational efficiency
cost, defined as the sum of total task delay and energy consumption,
normalized across scenarios.

6.4. Numerical results

6.4.1. Optimal propeller parameters

Fig. 9 shows the relationship between the overall energy consump-
tion and propeller blade parameters including the number of blades, and
the radius, width, mounting angle, and thickness of each blade, given
that all other parameters are fixed. From the results, we can infer that,
for a symmetric quadrotor UAV with a total mass of 80 kg, four rotors
and a maximum acceleration up to 5.28 m/s?, it is optimal to equip 2 pro-
peller blades with a radius of 500 mm, a width of 250 mm and a thickness
of 7.5 mm. The average energy consumption under configurations with
optimal values of parameters can be reduced by more than 30%, com-
pared to the average amount of 50 sets of random parameters generated
uniformly within the respective allowable range of each parameter.

6.4.2. Convergence performance

Fig. 10 demonstrates the average convergence speeds of GA-SCA,
CPS-ACO, and ACS-DS over 60 iterations, and TD3 algorithm over 3000
episodes for 200 independent runs. The results show that both ACS-DS
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and TD3 can optimize the energy efficiency through efficient exploring
optimal trajectories. However, the average training time per episode for
the RL-based TD3 are significantly higher than the average running time
per iteration of the other three heuristic algorithms. Therefore, due to its
faster convergence and lower computational overhead, ACS-DS is more
suitable for rapid decision-making and trajectory planning in unknown
environments.

6.4.3. Trajectory planning with attitude control

From the trajectories shown in Figs. 7a and 7b, we observe that, the
CPS-ACO, TD3, and ACS-DS algorithms are more capable of avoiding no-
fly zones. In addition, our proposed Attitude Control (ATC) method can
improve the trajectories planned by all algorithms, by effectively cor-
recting unwanted directional changes. Specifically, the FEAR-PID con-
troller dynamically optimizes flight attitude by adjusting the UAV rotor
speed in real-time based on sensor feedback, including error and envi-
ronmental data, resulting in more stable and precise flight control.

6.4.4. Operational efficiency cost

We present the results of the operational efficiency cost (considering
both delay and energy consumption) achieved by different implementa-
tions in Fig. 11. Note that the horizontal axis in this figure (and similar
plots throughout this section) represents discrete control time slots, each
of duration L = 0.1 s as defined in Section 3, rather than the UAV’s ac-
tual physical flight time. The overall mission duration T spans 20 to
35 minutes in our experiments, calculated as described in Section 6.1
below Table 5), and the figures display representative segments of the
trajectory for clarity of visualization. One important observation is that,
the decoupling mechanism and safety values in ACS-DS can significantly
reduce the overall consumption compared to the classical ACS, and have
a slight advantage over SOTA (state-of-the-art) reinforcement learning
methods such as TD3.

Moreover, the ATC mechanism further enhances the performance of
both RL-based (TD3) and heuristic-based (ACS-DS and CPS-ACO) meth-
ods. Overall, ACS-DS + ATC achieves the best performance in terms of
operational efficiency, closely followed by TD3 + ATC. Specifically, com-
pared with conventional ACS, TD3 + ATC reduces the operational effi-
ciency cost by 43.5%, while ACS-DS + ATC reduces it by 48.1%.

These results validate our initial claim in this paper, that jointly
optimizing attitude control, trajectory planning, and task assignment
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Fig. 11. Comparison of operational efficiency cost.

in UAV-assisted fog computing systems effectively captures the inter-
dependencies among these modules. Such integrated approaches (e.g.,
TD3 + ATC and our proposed ACS-DS + ATC) lead to significant improve-
ments in system performance compared to optimizing each aspect indi-
vidually.

6.4.5. Trajectory stability and robustness evaluation

To evaluate the stability and robustness of different control and plan-
ning algorithms in complex 3D environments, we conducted 50 indepen-
dent runs for each method under identical initial conditions and envi-
ronmental settings. The trajectories were generated by our Framework,
validated in Isaac Sim and AirSim, and subsequently rendered in the
WebGL visualization environment to provide a clearer and lightweight
presentation. In all figures, each polyline corresponds to one complete
trajectory obtained from a single run.

Fig. 12 compares the tracking performance of the classical PID con-
troller (red) and the proposed FEAR-PID controller (blue) along the same
reference path. The trajectories generated by PID exhibit noticeable drift

16

and oscillation, especially in densely cluttered urban regions. In con-
trast, FEAR-PID produces a significantly more compact trajectory cluster
with reduced lateral deviation, demonstrating superior attitude stability
and higher run-to-run consistency.

Fig. 13 presents the trajectory distributions of three planning algo-
rithms: ACS (yellow), TD3 (green), and ACS-DS (blue). ACS exhibits the
largest dispersion, indicating higher sensitivity to environmental varia-
tions. TD3 shows moderate improvement in stability, while ACS-DS pro-
duces the most concentrated trajectories among the three, confirming
that its decoupling mechanism and dynamic safety factors substantially
enhance planning robustness across repeated trials.

Overall, these results show that,

1. FEAR-PID effectively reduces disturbance-induced drift and im-
proves attitude control precision;

2. ACS-DS generates more stable and reliable flight paths under re-
peated execution;

3. Jointly optimizing control and planning is essential for ensuring de-
pendable UAV operation in realistic 3D environments.
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Fig. 13. Trajectory comparison of ACS (yellow), TD3 (green), and ACS-DS (blue). Visualization of 50 independent runs for evaluating trajectory stability and

robustness.

6.4.6. Ablation study results

We summarize the ablation results in Fig. 14, which report the av-
erage operational efficiency cost and its variance across configurations.
The full model consistently achieves the lowest cost. Removing the ACS-
DS trajectory planner causes the sharpest degradation, reflecting its im-
portance in balancing energy and delay. The absence of PSO-based task
assignment also leads to significant overhead due to poor task-resource
coordination.

Interestingly, even the removal of the FEAR-PID attitude controller,
while seemingly less impactful than trajectory and assignment modules,
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causes noticeable inefficiencies, particularly in maneuvering-intensive
segments such as ascent, descent, and turns. This confirms that flight
stability indirectly influences task execution and communication qual-
ity. The gamma-based channel allocation strategy, though relatively
lightweight, also contributes to system-wide efficiency by avoiding
bandwidth contention and ensuring smoother transmission.

Overall, the results confirm that all modules are complementary. The
holistic approach offers not only the best mean performance but also
the most stable behavior, reinforcing the need for joint optimization in
UAV-assisted fog computing.
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7. Conclusions

In this paper, we have proposed a joint optimization framework
to reduce the operational efficiency cost in UAV-assisted fog comput-
ing systems. Our proposed framework involves multiple modules, in-
cluding quadrotor UAYV attitude control, trajectory planning in a three-
dimensional spatial domain with continuously varying terrain heights,
and energy-efficient assignment of computing tasks to different com-
ponents in the network. We have designed appropriate mechanisms or
algorithms for each module in the framework, and integrated them to-
gether to obtain a holistic solution to improve the overall efficiency
in UAV-assisted fog computing. Specifically, we have proposed a novel
FEAR-PID control mechanism for effective attitude control, designed the
ACS-DS algorithm that overcomes the convergence issue in conventional
approaches for trajectory planning in three-dimensional domains, and a
modified PSO algorithm to determine the optimal task assignment. Nu-
merical results from a wide range of experiments have shown that our
proposed framework can reduce the operational efficiency cost signifi-
cantly compared to existing approaches.
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Appendix A. The Dynamics of a quadrotor UAV

We consider two key components in the structure of a quadrotor
UAV, namely the body frame and the earth frame. The body frame is
commonly used for attitude control of the UAV, where the positive di-
rection is the direction of ascent corresponding to the centers of the four
motors.

We assume that the airframe has the following characteristics and
constraints,

The structure of the quadrotor UAV is symmetric;

Friction between propeller and motor spindle is negligible;

e The stator magnetic field speed and rotor speed of the motors are
infinitely close to each other, such that the slip rate is 0;

e The quadrotor and propeller structures are rigid, with a uniform mass
distribution and the geometric center is the mass center;

e The Euler angles are bounded, ie., —z/2< ¢ <7/2,-n/2<6<

/2, - <y <.

Based on the above assumptions, we combine the dynamics prin-
ciples to establish a rigid body model for attitude control of quadrotor
UAV. It should be noted that all UAV coordinate system transformations
are obtained by rotation synthesis with respect to the fixed coordinate
system, the rotation matrix for the conversion of the body frame to the
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earth frame with the following equation,

R;

—_ (pd\! = (po\T

=(R)" = (R))

cosfcosy  cosysinfsing —sinycos¢g  cosy sinf cos @ + siny sin ¢
cos 0 siny siny sin@sin¢g + cosy cos¢  siny sin @ cos ¢ — cos y sin ¢p

—sin@ sin ¢b cos 6 cos ¢pcos 6

(A1)

Four inputs, including total thrust U,, roll torque U,, pitch torque U;,
and yaw torque U,, can be controlled based on the rotation speeds of
the four motors of the UAV, that is,

U, (1) = Cr() (@, (1) + 0,()* + 03t + 0,(1)?)

Uy (1) = Cr(0) (=0, () + @, (1)?)
U;(1) = Cr()(—w,(0* + w3(t)?)

(A.2)

Uy(1) = Coy (D (—0, (1) + 0,(1)* — w31 + 0, (1)?)

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

K. Ashton, That ‘internet of things’ thing, RFiD J. 22 (7) (1999) 97-114.

N. Hu, Z. Tian, X. Du, N. Guizani, Z. Zhu, Deep-Green: a dispersed energy-efficiency
computing paradigm for green industrial IoT, IEEE Trans. Green Commun. Netw. 5
(2) (2021) 750-764. https://doi.org/10.1109/TGCN.2021.3064683

J. Pei, H. Chen, L. Shu, UAV-assisted connectivity enhancement algorithms for mul-
tiple isolated sensor networks in agricultural internet of things, Comp. Netw. 207
(2022) 108854.

O. Ghdiri, W. Jaafar, S. Alfattani, J.B. Abderrazak, H. Yanikomeroglu, Offline and
online UAV-enabled data collection in time-constrained IoT networks, IEEE Trans.
Green Commun. Netw. 5 (4) (2021) 1918-1933. https://doi.org/10.1109/TGCN.
2021.3104801

P. Poksawat, L. Wang, A. Mohamed, Gain scheduled attitude control of fixed-wing
UAV with automatic controller tuning, IEEE Trans. Control Syst. Technol. 26 (4)
(2018) 1192-1203. https://doi.org/10.1109/TCST.2017.2709274

E. Besada-Portas, L. de la Torre, J.M. de la Cruz, B. de Andrés-Toro, Evolutionary
trajectory planner for multiple UAVs in realistic scenarios, IEEE Trans. Rob. 26 (4)
(2010) 619-634. https://doi.org/10.1109/TR0O.2010.2048610

C. Rottondi, F. Malandrino, A. Bianco, C.F. Chiasserini, I. Stavrakakis, Scheduling of
emergency tasks for multiservice UAVs in post-disaster scenarios, Comp. Netw. 184
(2021) 107644.

Z. Cheng, M. Liwang, N. Chen, L. Huang, X. Du, M. Guizani, Deep reinforcement
learning-based joint task and energy offloading in UAV-aided 6G intelligent edge
networks, Comp. Commun. 192 (2022) 234-244.

R. Zhou, X. Wu, H. Tan, R. Zhang, Two time-scale joint service caching and task
offloading for UAV-assisted mobile edge computing, in: IEEE INFOCOM 2022 - IEEE
Conference on Computer Communications, 2022, pp. 1189-1198.

S. Liu, J. Yin, Z. Zeng, J. Wu, Optimal trajectory planning and task assignment for
UAV-assisted fog computing, in: 2022 IEEE 24th International Conference on High
Performance Computing & Communications (HPCC), 2022, pp. 1400-1407. https:
//doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00217

L. Tan, S. Guo, P. Zhou, Z. Kuang, S. Long, Z. Li, Multi-UAV-enabled collaborative
edge computing: deployment, offloading and resource optimization, IEEE Trans.
Intell. Transp. Syst. 25 (11) (2024) 18305-18320. https://doi.org/10.1109/TITS.
2024.3432818

J. Zheng, K. Liu, 3D UAV trajectory planning with obstacle avoidance for UAV-
enabled time-constrained data collection systems, IEEE Trans. Veh. Technol. (2024)
1-14. https://doi.org/10.1109/TVT.2024.3419842

K.C.U. Obias, M.F.Q. Say, E.A.V. Fernandez, A.Y. Chua, E. Sybingco, A study of
the interaction of proportional-integral- derivative (PID) control in a quadcopter
unmanned aerial vehicle (UAV) using design of experiment, in: 2019 IEEE 11th
International Conference on Humanoid, Nanotechnology, Information Technology,
Communication and Control, Environment, and Management (HNICEM), 2019, pp.
1-4. https://doi.org/10.1109/HNICEM48295.2019.9072806

B.E. Demir, R. Bayir, F. Duran, Real-time trajectory tracking of an unmanned aerial
vehicle using a self-tuning fuzzy proportional integral derivative controller, Int. J.
Micro Air Veh. 8 (4) (2016) 252-268. https://doi.org/10.1177/1756829316675882
Z.Yu,Y.Li, M. Lv, B. Pei, A. Fu, Event-triggered adaptive fuzzy fault-tolerant attitude
control for tailless flying-wing UAV with fixed-time convergence, IEEE Trans. Veh.
Technol. 73 (4) (2024) 4858-4869. https://doi.org/10.1109/TVT.2023.3329470
B. Xia, I. Mantegh, W.-F. Xie, Hybrid framework for UAV motion planning and
obstacle avoidance: integrating deep reinforcement learning with fuzzy logic, in:
2024 10th International Conference on Control, Decision and Information Technolo-
gies (CoDIT), 2024, pp. 2662-2669. https://doi.org/10.1109/CoDIT62066.2024.
10708494

B.G. Shri Varu, N. Jayarajan, T. Ganesan, Optimizing quadcopter trajectory tracking
with deep-Q reinforcement PID controller in uncertain environments, in: 2024 IEEE
Third International Conference on Power Electronics, Intelligent Control and Energy
Systems (ICPEICES), 2024, pp. 341-346. https://doi.org/10.1109/ICPEICES62430.
2024.10719095

L. Shen, N. Wang, D. Zhang, J. Chen, X. Mu, K.M. Wong, Energy-aware dynamic
trajectory planning for UAV-enabled data collection in mmtc networks, IEEE Trans.
Green Commun. Netw. 6 (4) (2022) 1957-1971. https://doi.org/10.1109/TGCN.
2022.3186841

19

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Computer Networks 277 (2026) 112064

M. Diallo, A. Quintero, S. Pierre, An efficient approach based on ant colony opti-
mization and tabu search for a resource embedding across multiple cloud providers,
IEEE Trans. Cloud Comp. 9 (3) (2019) 896-909.

M. Yan, C.A. Chan, AF. Gygax, C. Li, A. Nirmalathas, C.-L. I, Efficient generation of
optimal UAV trajectories with uncertain obstacle avoidance in MEC networks, IEEE
Int. Things J. (2024) 1-1. https://doi.org/10.1109/J10T.2024.3446664

Y. Tao, J. Qiu, S. Lai, A hybrid cloud and edge control strategy for demand responses
using deep reinforcement learning and transfer learning, IEEE Trans. Cloud Comp.
10 (1) (2021) 56-71.

S. Liu, J. Yin, J. Du, Y. Zheng, Y. Deng, J. Wu, Meteorological and topographi-
cal big data-driven UAV trajectory planning, in: 2024 34th International Telecom-
munication Networks and Applications Conference (ITNAC), 2024, pp. 1-6. https:
//doi.org/10.1109/ITNAC62915.2024.10815424

M. Jain, V. Saihjpal, N. Singh, S.B. Singh, An overview of variants and advancements
of PSO algorithm, Appl. Sci. 12 (17) (2022) 8392.

J.-J. Shin, H. Bang, UAV path planning under dynamic threats using an improved
PSO algorithm, Int. J. Aerosp. Eng. 2020 (2020) 1-17.

M. Dorigo, G. Di Caro, L.M. Gambardella, Ant algorithms for discrete optimization,
Artif. Life 5 (2) (1999) 137-172.

K. Socha, ACO for continuous and mixed-variable optimization, in: International
Workshop on Ant Colony Optimization and Swarm Intelligence, Springer, 2004, pp.
25-36.

C. Wang, Y. Nan, S. Zhang, L. Jiang, Application of the adaptive double-layer ant
colony algorithm in UAV trajectory planning, in: 2021 4th International Conference
on Intelligent Autonomous Systems (ICoIAS), 2021, pp. 371-377. https://doi.org/
10.1109/1C0IAS53694.2021.00073

J. Cui, Y. Liu, A. Nallanathan, Multi-agent reinforcement learning-based resource
allocation for UAV networks, IEEE Trans. Wireless Commun. 19 (2) (2020) 729-743.
https://doi.org/10.1109/TWC.2019.2935201

M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, X. Shen, Energy-efficient UAV-assisted
mobile edge computing: resource allocation and trajectory optimization, IEEE Trans.
Veh. Technol. 69 (3) (2020) 3424-3438.

G. Wu, H. Wang, H. Zhang, Y. Zhao, S. Yu, S. Shen, Computation offloading method
using stochastic games for software-defined-network-based multiagent mobile edge
computing, IEEE Int. Things J. 10 (20) (2023) 17620-17634. https://doi.org/10.
1109/JI0T.2023.3277541

G. Francesca, A. Santone, G. Vaglini, M.L. Villani, Ant colony optimization for dead-
lock detection in concurrent systems, in: 2011 IEEE 35th Annual Computer Soft-
ware and Applications Conference, 2011, pp. 108-117. https://doi.org/10.1109/
COMPSAC.2011.22

W. Hou, Z. Xiong, C. Wang, H. Chen, Enhanced ant colony algorithm with commu-
nication mechanism for mobile robot path planning, Rob. Auton. Syst. 148 (2022)
103949. https://doi.org/10.1016/j.robot.2021.103949

J. Liu, H. Weng, Y. Ge, S. Li, X. Cui, A self-healing routing strategy based on ant
colony optimization for vehicular ad hoc networks, IEEE Int. Things J. 9 (22) (2022)
22695-22708. https://doi.org/10.1109/J10T.2022.3181857

P. Qin, Y. Fu, Y. Xie, K. Wu, X. Zhang, X. Zhao, Multi-agent learning-based optimal
task offloading and UAV trajectory planning for AGIN-Power IoT, IEEE Trans. Com-
mun. 71 (7) (2023) 4005-4017. https://doi.org/10.1109/TCOMM.2023.3274165
X. Wei, L. Cai, N. Wei, P. Zou, J. Zhang, S. Subramaniam, Joint UAV trajectory
planning, DAG task scheduling, and service function deployment based on DRL in
UAV-Empowered edge computing, IEEE Int. Things J. 10 (14) (2023) 12826-12838.
https://doi.org/10.1109/J10T.2023.3257291

C. Zheng, K. Pan, J. Dong, L. Chen, Q. Guo, S. Wu, H. Luo, X. Zhang, Multi-agent
collaborative optimization of UAV trajectory and latency-aware DAG task offload-
ing in UAV-assisted MEC, IEEE Access 12 (2024) 42521-42534. https://doi.org/10.
1109/ACCESS.2024.3378512

Y. Huang, R. Zhou, An online framework for joint UAV trajectory planning and
intelligent dependent task offloading, in: 2023 20th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON), 2023, pp.
258-266.

C. Xu, P. Zhang, H. Yu, Y. Li, Dynamic blockchain-empowered trustworthy end-
edge collaborative computing via rotating multi-agent DRL, IEEE Trans. Wireless
Commun. 24 (6) (2025) 4864-4878.

C. Xu, Z. Tang, H. Yu, P. Zeng, L. Kong, Digital twin-driven collaborative scheduling
for heterogeneous task and edge-end resource via multi-agent deep reinforcement
learning, IEEE J. Sel. Areas Commun. 41 (10) (2023) 3056-3069.

W.H. Yew, C. Fat Chau, A.W. Mahmood Zuhdi, W. Syakirah Wan Abdullah, W.K.
Yew, N. Amin, Investigating the performance of deep reinforcement learning-based
MPPT algorithm under partial shading condition, in: 2023 IEEE Regional Sympo-
sium on Micro and Nanoelectronics (RSM), 2023, pp. 9-12. https://doi.org/10.
1109/RSM59033.2023.10326748

K. Dev, P.K.R. Maddikunta, T.R. Gadekallu, S. Bhattacharya, P. Hegde, S. Singh, En-
ergy optimization for green communication in IoT using Harris hawks optimization,
IEEE Trans. Green Commun. Netw. 6 (2) (2022) 685-694. https://doi.org/10.1109/
TGCN.2022.3143991

X. Wei, C. Tang, J. Fan, S. Subramaniam, Joint optimization of energy consumption
and delay in cloud-to-thing continuum, IEEE Int. Things J. 6 (2) (2019) 2325-2337.
https://doi.org/10.1109/JI0T.2019.2906287

X. Huang, W. Luo, J. Liu, Attitude control of fixed-wing UAV based on DDQN, in:
2019 Chinese Automation Congress (CAC), 2019, pp. 4722-4726. https://doi.org/
10.1109/CCDC49329.2020.9164051

P. Biczyski, et al., Multirotor UAV design and performance modeling-a survey,
Drones (2020).

K. Zhu, R. Chen, L. Zhang, A survey on heavy-lift multirotor UAV systems: payload,
propulsion, and endurance, Unmanned Syst. 9 (4) (2021) 185-198.


http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0001
https://doi.org/10.1109/TGCN.2021.3064683
https://doi.org/10.1109/TGCN.2021.3064683
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0003
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0003
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0003
https://doi.org/10.1109/TGCN.2021.3104801
https://doi.org/10.1109/TGCN.2021.3104801
https://doi.org/10.1109/TGCN.2021.3104801
https://doi.org/10.1109/TGCN.2021.3104801
https://doi.org/10.1109/TCST.2017.2709274
https://doi.org/10.1109/TCST.2017.2709274
https://doi.org/10.1109/TRO.2010.2048610
https://doi.org/10.1109/TRO.2010.2048610
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0007
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0007
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0007
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0008
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0008
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0008
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0009
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0009
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0009
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00217
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00217
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00217
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00217
https://doi.org/10.1109/TITS.2024.3432818
https://doi.org/10.1109/TITS.2024.3432818
https://doi.org/10.1109/TITS.2024.3432818
https://doi.org/10.1109/TITS.2024.3432818
https://doi.org/10.1109/TVT.2024.3419842
https://doi.org/10.1109/TVT.2024.3419842
https://doi.org/10.1109/HNICEM48295.2019.9072806
https://doi.org/10.1109/HNICEM48295.2019.9072806
https://doi.org/10.1177/1756829316675882
https://doi.org/10.1177/1756829316675882
https://doi.org/10.1109/TVT.2023.3329470
https://doi.org/10.1109/TVT.2023.3329470
https://doi.org/10.1109/CoDIT62066.2024.10708494
https://doi.org/10.1109/CoDIT62066.2024.10708494
https://doi.org/10.1109/CoDIT62066.2024.10708494
https://doi.org/10.1109/CoDIT62066.2024.10708494
https://doi.org/10.1109/ICPEICES62430.2024.10719095
https://doi.org/10.1109/ICPEICES62430.2024.10719095
https://doi.org/10.1109/ICPEICES62430.2024.10719095
https://doi.org/10.1109/ICPEICES62430.2024.10719095
https://doi.org/10.1109/TGCN.2022.3186841
https://doi.org/10.1109/TGCN.2022.3186841
https://doi.org/10.1109/TGCN.2022.3186841
https://doi.org/10.1109/TGCN.2022.3186841
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0019
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0019
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0019
https://doi.org/10.1109/JIOT.2024.3446664
https://doi.org/10.1109/JIOT.2024.3446664
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0021
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0021
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0021
https://doi.org/10.1109/ITNAC62915.2024.10815424
https://doi.org/10.1109/ITNAC62915.2024.10815424
https://doi.org/10.1109/ITNAC62915.2024.10815424
https://doi.org/10.1109/ITNAC62915.2024.10815424
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0023
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0023
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0024
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0024
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0025
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0025
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0026
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0026
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0026
https://doi.org/10.1109/ICoIAS53694.2021.00073
https://doi.org/10.1109/ICoIAS53694.2021.00073
https://doi.org/10.1109/ICoIAS53694.2021.00073
https://doi.org/10.1109/ICoIAS53694.2021.00073
https://doi.org/10.1109/TWC.2019.2935201
https://doi.org/10.1109/TWC.2019.2935201
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0029
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0029
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0029
https://doi.org/10.1109/JIOT.2023.3277541
https://doi.org/10.1109/JIOT.2023.3277541
https://doi.org/10.1109/JIOT.2023.3277541
https://doi.org/10.1109/JIOT.2023.3277541
https://doi.org/10.1109/COMPSAC.2011.22
https://doi.org/10.1109/COMPSAC.2011.22
https://doi.org/10.1109/COMPSAC.2011.22
https://doi.org/10.1109/COMPSAC.2011.22
https://doi.org/10.1016/j.robot.2021.103949
https://doi.org/10.1016/j.robot.2021.103949
https://doi.org/10.1109/JIOT.2022.3181857
https://doi.org/10.1109/JIOT.2022.3181857
https://doi.org/10.1109/TCOMM.2023.3274165
https://doi.org/10.1109/TCOMM.2023.3274165
https://doi.org/10.1109/JIOT.2023.3257291
https://doi.org/10.1109/JIOT.2023.3257291
https://doi.org/10.1109/ACCESS.2024.3378512
https://doi.org/10.1109/ACCESS.2024.3378512
https://doi.org/10.1109/ACCESS.2024.3378512
https://doi.org/10.1109/ACCESS.2024.3378512
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0037
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0037
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0037
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0037
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0038
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0038
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0038
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0039
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0039
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0039
https://doi.org/10.1109/RSM59033.2023.10326748
https://doi.org/10.1109/RSM59033.2023.10326748
https://doi.org/10.1109/RSM59033.2023.10326748
https://doi.org/10.1109/RSM59033.2023.10326748
https://doi.org/10.1109/TGCN.2022.3143991
https://doi.org/10.1109/TGCN.2022.3143991
https://doi.org/10.1109/TGCN.2022.3143991
https://doi.org/10.1109/TGCN.2022.3143991
https://doi.org/10.1109/JIOT.2019.2906287
https://doi.org/10.1109/JIOT.2019.2906287
https://doi.org/10.1109/CCDC49329.2020.9164051
https://doi.org/10.1109/CCDC49329.2020.9164051
https://doi.org/10.1109/CCDC49329.2020.9164051
https://doi.org/10.1109/CCDC49329.2020.9164051
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0044
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0044
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0045
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0045

S. Liu et al.

[46] J. Pollet, et al., Power loading and disk loading analysis for multirotors, Aerospace
Sci. (2020).

[47] A. Karam, et al., Performance study of agricultural quadrotors under variable pay-
load, Appl. Sci. (2024).

[48] M. Silva, et al., Heavy-lift quadrotor flight characterization and endurance modeling,
J. Field Rob. (2024).

[49] M. Zukerman, Introduction to queueing theory and stochastic teletraffic mod-
els,(2013). arXiv preprint arXiv:1307.2968

20

[50]

[51]

Computer Networks 277 (2026) 112064

J. Li, J. Tang, Z. Liu, On the data freshness for industrial internet of
things with mobile-edge computing, IEEE Int. Things J. 9 (15) (2022) 13542-
13554.

T.A. Khan, S.H. Ling, A.S. Mohan, Advanced particle swarm optimization algorithm
with improved velocity update strategy, in: 2018 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2018, pp. 3944-3949. https://doi.org/10.
1109/SMC.2018.00669


http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0046
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0046
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0047
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0047
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0048
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0048
http://arxiv.org/abs/1307.2968
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0050
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0050
http://refhub.elsevier.com/S1389-1286(26)00076-9/sbref0050
https://doi.org/10.1109/SMC.2018.00669
https://doi.org/10.1109/SMC.2018.00669
https://doi.org/10.1109/SMC.2018.00669
https://doi.org/10.1109/SMC.2018.00669

	blackEnergy-aware holistic optimization in UAV-assisted fog computing: Attitude, trajectory, and task assignmenttag=Referencetag=Reference 
	1 Introduction 
	2 Related work
	2.1 Attitude control
	2.2 Trajectory planning
	2.3 Task assignment
	2.4 Joint optimization

	3 System model
	3.1 Network structure and components
	3.2 The controllable structure of a quadrotor UAV
	3.3 Rotor propeller design of quadrotor UAV
	3.4 Transmission model
	3.5 Energy consumption model
	3.5.1 UAV movement
	3.5.2 Energy consumption for transmission
	3.5.3 Energy consumption for computation
	3.5.4 Overall energy consumption

	3.6 Delay model
	3.6.1 Transmission delay
	3.6.2 Computation delay
	3.6.3 Queuing delay
	3.6.4 Total delay


	4 Joint optimization problem
	5 Algorithms
	5.1 Attitude control
	5.1.1 Classical PID control
	5.1.2 Fuzzy PID control
	5.1.3 FEAR-PID control

	5.2 Task assignment and resource allocation
	5.3 ACS-DS for trajectory planning: motivation and concept
	5.3.1 Safety values
	5.3.2 Decoupling

	5.4 ACS-DS: Detailed steps
	5.5 ACS-DS: Proof of convergence
	5.6 ACS-DS: Complexity analysis

	6 Performance evaluation
	6.1 Experiment setup
	6.2 Simulation environments
	6.3 Module-wise ablation study
	6.4 Numerical results
	6.4.1 Optimal propeller parameters
	6.4.2 Convergence performance
	6.4.3 Trajectory planning with attitude control
	6.4.4 Operational efficiency cost
	6.4.5 Trajectory stability and robustness evaluation
	6.4.6 Ablation study results


	7 Conclusions
	A The Dynamics of a quadrotor UAV


