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 a b s t r a c t

Unmanned Aerial Vehicles (UAVs) have significantly enhanced fog computing by acting as both flexible compu-
tation platforms and communication mobile relays. In this paper, we consider four important and interdependent 
modules: attitude control, trajectory planning, resource allocation, and task assignment, and propose a holistic 
framework that jointly optimizes the total latency and energy consumption for UAV-assisted fog computing in 
a three-dimensional spatial domain with varying terrain elevations and dynamic task generations. We first es-
tablish a fuzzy-enhanced adaptive reinforcement proportional-integral-derivative control model to control the 
attitude. Then, we propose an enhanced Ant Colony System (ACS) based algorithm, that includes a safety value 
and a decoupling mechanism to overcome the convergence issue in classical ACS, to compute the optimal UAV 
trajectory. Finally, we design an algorithm based on the Particle Swarm Optimization technique, to determine 
where each offloaded task should be executed. Under our proposed framework, the outcome of one module 
would affect the decision-making in another, providing a holistic perspective of the system and thus leading to 
improved solutions. We demonstrate by extensive simulation results that our proposed framework can signif-
icantly improve the overall performance, measured by latency and energy consumption, compared to existing 
mainstream approaches.

1.  Introduction

Driven by the development of the Internet of Things (IoT) [1], mo-
bile terminal devices such as smartphones and tablets are now capable of 
generating and collecting massive amounts of data. However, the ability 
of processing these data, such as performing computational tasks, in the 
IoT devices are still limited [2,3]. On the other hand, Unmanned Aerial 
Vehicles (UAVs) have been recently identified as a versatile platform 
that connects IoT devices and servers or data centers via the network 
edge [4]. In addition, some UAVs are equipped with computational ca-
pabilities and thus can be regarded as “moving fog nodes" for offloading 
certain computational tasks. To fully utilize the versatility and flexibil-
ity of UAVs in fog computing, key considerations include the manage-
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ment of each UAV’s attitude, the strategic planning of their respective 
trajectories, and the efficient task assignment policy to determine the 
appropriate computing device for each task.

We consider a fog computing environment with a single UAV de-
ployed at the network edge, aiming at maximizing the energy efficiency 
by collaboratively controlling the attitudes, planning the trajectories, 
allocating the transmission and computation resources, and assigning 
computing tasks to appropriate devices for execution. Specifically, at-
titude control (by adjusting pitch, roll, and yaw) ensures a stable and 
precise orientation of the UAV during operation, which is a necessary 
condition to maintain a high quality of communication with IoT de-
vices and other fog nodes [5]. In addition, a stable attitude facilitates 
the UAV to effectively perform computation and storage tasks as a fog 
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\begin {equation}P^{\text {LoS}}_j(t)=\frac {1}{1+\zeta _j \cdot \exp \left (-\left (\theta _{j}-\zeta _j \right )\right )}. \label {Xeqn7-7}\end {equation}
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Table 1 
A summary and comparison of related studies.
 Research  Year  Process(es) focused  Method(s)  Objective(s)
 [41]  2022  TA  Heuristic Harris Hawks Optimization  Min. energy consumption
 [18]  2022  TP  Clustered-PSO  Min. energy efficiency
 [32]  2022  TP  Enhanced ACS  Avoid path deadlock
 [33]  2022  TP  Segmented ACS with Self-healing Routing  Avoid path deadlock
 [27]  2021  3D-TP  Double-layer ACS  Optimal trajectory
 [12]  2024  3D-TP  Genetic Algorithm (GA) & SCA  Optimal trajectory
 [20]  2024  3D-TP  Chaotic-Polarized-Simulated scheme ACO  Min. trajectory loss rate
 [13]  2019  ATC  Traditional PID controller  Max. control accuracy
 [15]  2024  ATC  Fuzzy PID Controller  Min. control bias
 [17]  2024  ATC  RL (Deep Q-Network) PID Controller  Max. control accuracy
 [30]  2023  TA & RA  MARL & Stochastic Game Model  Min. energy consumption and latency
 [14]  2016  3D-TP & ATC  Fuzzy PID controller  Control attitude and track trajectory
 [16]  2024  3D-TP & ATC  RL PID Controller  Avoidance of obstacles
 [35]  2023  2D-TP & TA  RL (Deep Q-Network)  Min. energy consumption and latency
 [28]  2020  3D-TP & TA  MARL  Max. long-term resource efficiency
[9] 2022 3D-TP & TA Successive convex approximation Min. latency
[37] 2023 3D-TP & TA DRL Min. latency
 [42]  2019  2D-TP & TA & RA  GA & Stepwise Approximation  Min. energy consumption and latency
 [29]  2020  3D-TP & TA & RA  SCA & ADMM (Alternating Direction Method of Multipliers)  Max. UAV energy efficiency
 [34]  2023  3D-TP & TA & RA  RL (MADDPG)  Min. energy consumption and latency
 [11]  2024  3D-TP & TA & RA  Differential Evolutionary (DE) & RL (TD3)  Optimal trajectory and convergence
 Our Work  2025  3D-TP & TA & RA & ATC  ACS-DS & PSO & FEAR-PID  Min. energy consumption and latency

Note: TP = Trajectory Planning, TA = Task Assignment, RA = Resource Allocation, ATC = Attitude Control

node. On the other hand, trajectory planning of the UAV can re-
duce its power consumption by identifying the most efficient path to
collect data and tasks based on the locations of IoT devices [6]. Finally,
task assignment refers to the process of deciding whether a specific 
task should be handled locally by the IoT device, processed in the fog 
layer (including the UAV), or offloaded to the central cloud based on 
real-time application-specific scenarios [7]. Specific objectives, includ-
ing minimizing latency, maximizing throughput, or optimizing energy 
efficiency, can be achieved by assigning tasks to appropriate devices. 
Task assignment is often jointly optimized with resource allocation, 
where transmission resources such as power and bandwidth are dis-
tributed among different transmission pairs in the network, to facilitate 
the transmission process and improve the overall efficiency.

The four processes that we consider are inherently linked in UAV-
assisted fog computing. For example, a UAV’s attitude control would 
ensure that it maintains optimal orientations while following a planned 
trajectory or processing a task. Also, when deciding whether to offload a 
certain task to the fog or the cloud and how to allocate relevant transmis-
sion resources, the energy consumption and latency for a certain UAV 
to reach the proximity of the IoT initiating the task along a planned 
trajectory should also be taken into account.

Existing studies have considered two or three processes for joint opti-
mization. For example, Cheng et al. [8] proposed three decision-making 
algorithms to solve the joint optimization problem involving energy con-
sumption and mean delay. Zhou et al. [9] proposed a two-time-scale 
optimization framework that jointly determines caching placement and 
task offloading decisions while adaptively adjusting the UAV trajectory. 
However, few considered all these aspects together in an interconnected 
manner. A summary of relevant studies is provided in Table 1, and we 
will discuss them in more detail in Section 2.

This work substantially extends our earlier conference paper [10], 
to better capture the practical dynamics of UAV-assisted fog comput-
ing networks. The major improvements include: 1) While the previ-
ous study focused on a two-dimensional setting with simplified flight 
and communication assumptions, the present work develops a three-
dimensional, terrain-aware network model that incorporates altitude 
variation and realistic environmental constraints; 2) We introduce an 
additional module (attitude control) for quadrotor UAVs, enabling the 
system to maintain stable flight, enhance link reliability under varying 
orientations, and mitigate latency during altitude transitions; and 3) We 
refine the algorithm for trajectory planning to better avoid deadlock by 

introducing decoupling and safety values mechanisms. These extensions 
allow the UAV to adapt its physical configuration and communication 
behavior in a coordinated manner, thereby improving overall energy ef-
ficiency, communication stability, and task execution performance be-
yond what was achieved in [10]. Compared to similar existing studies 
(e.g.,[11,12]), which only considered the trajectory planning and flight 
attitude at independent static points, we jointly consider planning the 
optimal trajectory and determining the attitudes, taking into account the 
extra consumption required for changing attitude along the trajectory. 
Our research is expected to provide new useful insights in UAV-assisted 
fog computing applications for improving the overall performance and 
efficiency.

Although some of the individual strategies employed in this work, 
such as fuzzy, adaptive, and PID algorithms, are well-established, the 
novelty of our approach lies in how these algorithms are integrated and 
jointly optimized within a unified UAV-assisted fog computing frame-
work. In contrast to most existing studies that treat control and net-
working processes separately, our framework co-designs attitude con-
trol, trajectory planning, task assignment, and resource allocation in a 
mutually dependent manner. This cross-layer integration enables the 
UAV to adapt its physical dynamics and communication decisions in real 
time according to network conditions, task demands, and environmental 
factors. As a result, the proposed approach improves system-level per-
formance in terms of energy efficiency, communication reliability, and 
latency, thereby providing a new perspective on the joint optimization 
of control and communication functions in UAV-enabled fog computing 
networks.

The contributions of this paper are summarized as follows.

• From a computer and communication network perspective, this 
work proposes a unified optimization framework for UAV-assisted 
fog computing networks that jointly integrates attitude con-
trol, trajectory planning, task assignment, and resource alloca-
tion within a three-dimensional network topology. By coupling the 
UAV’s physical-layer control (attitude control) with network-layer
decision making (resource allocation and task assignment), our 
cross-layer joint optimization framework captures the mutual de-
pendencies among communication stability, mobility dynamics, and 
computational load distribution, thereby achieving adaptive connec-
tivity, reduced latency, and improved overall network performance 
in realistic, terrain-aware IoT environments.
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• We develop a fuzzy-enhanced adaptive reinforcement proportional-
integral-derivative (FEAR-PID) model for attitude management of 
quadrator UAVs. Compared with classical PID and conventional 
fuzzy-PID control commonly used in existing studies, FEAR-PID cap-
tures interdependencies among parameters and adapts dynamically 
to environmental changes. Our results demonstrate that FEAR-PID 
significantly enhances stability during takeoff, cruising, and landing 
phases, thereby effectively reducing latency and energy consumption 
in UAV-assisted fog computing systems.

• We propose a computationally efficient algorithm called ACS-DS 
(Ant Colony System with Decoupling and Safety values) for UAV tra-
jectory planning. The ACS-DS algorithm integrates decoupling and 
safety value mechanisms to address typical limitations of classical 
ACS, such as slow convergence rates and susceptibility to local op-
tima. Numerical experiments also confirm ACS-DS’s superior conver-
gence performance relative to mainstream heuristic and reinforce-
ment learning-based methods.

• We propose a heuristic algorithm based on PSO principles to effec-
tively resolve the resource allocation and task assignment problems, 
given that an initial trajectory of the UAV has been determined. 
The heuristic algorithm efficiently overcomes the inherent complex-
ities of the underlying non-convex optimization problems, providing 
quasi-optimal solutions for task assignment and resource allocation 
decisions.

• We demonstrate, through extensive numerical experiments, that our 
proposed holistic framework can reduce overall operational effi-
ciency cost by more than 67% reduction in overall operational costs 
compared to existing heuristic and reinforcement learning-based 
methodologies. Our analysis and results underscore the importance 
of considering interdependencies among attitude control, trajectory 
planning, resource allocation, and task assignment in UAV-assisted 
fog computing. Consequently, the holistic approach significantly 
outperforms methods optimizing individual components separately, 
highlighting the cumulative benefits of joint optimization in such 
environment.

The rest of this paper is organized as follows. Section 2 reviews recent 
advancements on attitude control, trajectory planning, and task assign-
ment in UAV-assisted fog computing. Section 3 provides descriptions on 
the UAV architecture as well as key metrics at the system level. Section 4 
explains the formulation of the joint optimization problem. Section 5 de-
scribes the proposed computationally efficient algorithms to solve the 
problem in detail. Section 6 demonstrates the improvements of the pro-
posed algorithm by extensive numerical results. Section 7 concludes the 
paper.

2.  Related work

2.1.  Attitude control

The proportional-integral-derivative (PID) control system is a fun-
damental approach widely used in the attitude control and trajectory 
planning of quadrotor UAVs [13,14]. Building on this foundation, fuzzy 
PID control introduces adaptive capabilities by incorporating fuzzy logic 
to dynamically adjust the proportional-integral (PI) and proportional-
derivative (PD) components, resulting in improved stability and reduced 
trajectory tracking errors  [15]. Recent studies further enhance these 
methods by leveraging reinforcement learning (RL). For instance, RL 
has been employed to regulate linear velocity while fuzzy logic manages 
angular velocity, achieving a complementary control strategy [16]. An-
other approach is the participation of RL in the construction of the PID 
controllers, which optimizes the gain parameters in real-time to achieve 
more accurate adaptive control under dynamic and complex environ-
mental conditions [17].

2.2.  Trajectory planning

For trajectory planning of UAVs, heuristic algorithms such as PSO 
[18], ACS [19,20], and genetic algorithm (GA) [12], have been adopted 
to overcome the space and computation complexities in such problems. 
Compared with another branch of approaches that use neural networks 
and deep learning as the key techniques (e.g., [11,21]), heuristic algo-
rithms are more interpretable and less data dependent, and thus more 
appropriate for UAV-assisted fog computing scenarios where the oper-
ational environments are usually highly diverse and dynamic [22], and 
transparent heuristics are preferred for regulators to validate and verify 
the operation. Among the heuristic algorithms, the PSO [23] is one of 
the most commonly used techniques in such problems. However, one 
major concern of applying PSO in complex systems is that PSO may be 
converged prematurely to local optima [24].

ACS, based on the study of ants searching for food, is another com-
monly adopted technique in discrete and continuous optimization prob-
lems [25,26]. While ACS-based approaches are well-known for their
robustness, they also suffer the disadvantage of being prone to local 
optima due to premature convergence like PSO. To overcome this issue, 
Wang et al. [27] presented an adaptive double-layer ant colony opti-
mization algorithm (DL-ACS) based on an elitist strategy (ADAS) and an 
improved moving average algorithm (IMA) to solve a three-dimensional 
UAV trajectory planning problem. Recently, Yan et al. [20] proposed 
a chaotic-polarized-simulated ant colony optimization (CPS-ACO) algo-
rithm, by incorporating chaotic mapping for initial pheromone distribu-
tion, a polarizing pheromone recording rule, and a simulated annealing 
mechanism, CPS-ACO demonstrated enhanced convergence speed and 
robustness against local optima in trajectory planning.

2.3.  Task assignment

Resource allocation or task assignment problems have been exten-
sively studied in existing studies. For example, Cui et al. [28] proposed 
a multi-agent Q-learning-based reinforcement learning (MARL) frame-
work, where each agent independently executes the allocation algorithm 
to optimize the overall energy efficiency. Li et al. [29] both consid-
ered a joint optimization problem involving trajectory optimization and 
task allocation, with the goal of minimizing UAV energy consumption 
and optimizing computation offloading and using successive convex ap-
proximation (SCA) technique to solve it. Wu et al. [30] proposed a co-
operative multi-agent deep reinforcement learning framework, which 
combines task assignment and allocation of limited communication re-
sources to minimize the overall energy consumption and delay.

2.4.  Joint optimization

One notable issue of applying ACS, GA or PSO in joint optimization 
involving trajectory planning and task assignment is that the algorithm 
may enter the deadlock state where one or more tasks wait endlessly 
for resources [31]. Hou et al. [32] proposed ACS-based algorithms with 
enhanced communication mechanisms to avoid deadlocks. While the 
proposed methods managed to reduce the likelihood of deadlocks, they 
did not eliminate the possibilities of such undesirable events. Another 
effort to overcome the deadlock problem is segmented planning and 
reintegration [33], which introduces self-healing mechanisms like In-
Road Repairing and Intersection Repairing. These methods dynamically 
recalculate paths and penalize deadlocked routes using a negative re-
inforcement strategy. While this approach effectively avoids deadlocks 
and improves reliability, it incurs computational overhead due to fre-
quent evaluations and path adjustments.

Another emerging approach to solving UAV-related planning and op-
timization problems is deep reinforcement learning (DRL) (e.g., [34–
36]). Recently, Tan et al. [11] built a two-layer optimization frame-
work by combining differential evolutionary algorithms and deep
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reinforcement learning to optimize the UAV deployment, tasks assign-
ment and resource allocation efficiency when participating in multi-
access edge computing. Proximal policy optimization-based deep rein-
forcement learning algorithms were used in [37] to learn the optimal 
offloading strategy for dependent tasks in a joint optimization problem 
that also involves trajectory planning. DRL-based approaches have been 
also jointly applied with other optimization modules in edge computing, 
such as blockchain consensus leader election and waiting time window 
decision [38], and estimation of resource requirements through digital 
twins [39].

Compared with DRL-based approaches, the heuristic algorithms 
(such as ACS and PSO) are known to be more scalable, more adap-
tive and less computationally intensive [40]. These advantages make 
them particularly well-suited for the dynamic and large-scale nature of 
UAV-assisted fog computing scenarios. We will also compare their per-
formance and computational efficiency in Section 6 of this paper.

Our work in this paper combines the techniques mentioned above 
that have been demonstrated to be effective in respective processes, in-
cluding FEAR-PID attitude control, ACS-based trajectory planning, and 
PSO-based task allocation and resource allocation. Following this foun-
dation, we further improve several aspects of the entire framework, such 
as 1) the hardware of the quadrotor is designed to match the efficient 
performance of the FEAR-PID control system, 2) two enhanced anti-
lockout mechanisms (decoupling and safety values) in the classical ACS 
for trajectory planning, and 3) a modified PSO approach with improved 
efficiency that is more appropriate for task assignment and resource al-
location in large-scale UAV-assisted fog computing systems.

3.  System model

3.1.  Network structure and components

We consider a UAV-assisted fog computing system in a three-
dimensional Euclidean space. The system consists of a quadrotor UAV, a 
remote data center (DC) in the cloud, and 𝐾 mobile IoT devices (MDs). 
A demonstration of the key structures in the system is shown in Fig. 1.

Fig. 1. The structure of UAV-assisted fog computing network.

The positions of 𝐾 MDs are randomly distributed according to a Pois-
son Point Process (PPP), with the coordinate of the 𝑗th MD denoted 
by 𝑴 𝑗 =

[

𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗
]

. For convenience, we discretize a continuous time 
horizon with length 𝑇  uniformly into 𝑁 timeslots, and thus each times-
lot has a length of 𝐿 = 𝑇

𝑁 . We assume that 𝑁 is sufficiently large, or 
equivalently, the timeslots are sufficiently short, such that the position 
of the UAV can be considered to be fixed within each timeslot. Note 
that this timeslot refers to the high-level system decision interval for 
task allocation, trajectory updates, and communication resource allo-
cation, rather than the low-level attitude control loop of the UAV. The 
attitude control loop typically operates at 100–500 Hz and is handled 
automatically by the flight controller, whereas the system-level deci-
sion timeslot in UAV or general mobile edge computing (MEC) systems 
commonly ranges from 0.1 s to several seconds and has no direct corre-
spondence with the flight control loop frequency. We use [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)], 
where 𝑡 ∈ {1, 2,⋯ , 𝑁}, to denote the UAV position at the 𝑡th timeslot. 
The UAV is powered by a battery with a maximum capacity of 𝐵𝑐 . The 
height and speed are restricted to not exceed 𝑧max and 𝑣max, respectively, 
at all times.

We consider that task arrivals from each MD conform to a Poisson 
process, with an arrival rate 𝜆𝑗 from the 𝑗th MD. We use 𝑠𝑖𝑗 (𝑡), which is 
assumed to be exponentially distributed, to denote the data size of the 
𝑖th task from the 𝑗th MD to be processed at the 𝑡th timeslot, and 𝑐𝑖𝑗 to 
denote the number of CPU cycles per bit required to process the task. As 
we introduced in [10], the proportion of channels allocated to the 𝑗th 
MD would be based on the Gamma distribution,

𝑃𝑗 (𝑡) =
𝛽𝛼

(𝛼 − 1)!
𝑠𝑖𝑗 (𝑡)𝛼−1𝑒

−𝛽𝑠𝑖𝑗 (𝑡), (1)

where 𝛼 and 𝛽 are the shape and rate parameters in the Gamma dis-
tribution. For demonstration purposes, we set 𝛼 = 𝛽 = 2 throughout the 
paper.

Given the total number of available channels 𝑁𝑐 , the number of chan-
nels allocated to the 𝑗th MD at the 𝑡th timeslot is 𝐶𝑗 (𝑡) =

[

𝑁𝑐 ⋅ 𝑃𝑗 (𝑡)
]

where [𝑥] rounds 𝑥 to the nearest integer. The rationale of this arrange-
ment is to prevent the channel from being monopolized by extremely 
large tasks, and thus to ensure a certain level of transmission efficiency 
for all tasks.

For the 𝑖th task from the 𝑗th MD, we denote the energy consump-
tion and delay as 𝐸𝑖𝑗 and 𝐷𝑖𝑗 , respectively. For each task, the quadro-
tor UAV needs to move sufficiently close to the MD that initiates the 
task through a planned trajectory, in order to receive and further pro-
cess the task. As mentioned earlier, a task may be executed locally, in 
the fog layer by the UAV, or further offloaded to the data centers in 
the central cloud. The computing results of any offloaded task need 
to be transmitted back to the initiating MD. In this context, we define 
𝐨𝑖𝑗 (𝑡) = (𝑜MD𝑖𝑗 (𝑡), 𝑜UAV𝑖𝑗 (𝑡), 𝑜DC𝑖𝑗 (𝑡)) as an array consisting of binary variables 
that indicate the specific execution location of the 𝑖th task from the 𝑗th 
MD during the 𝑡th timeslot.

For ease of reference, Table 2 summarizes the core notations used 
throughout the system model in Section 3; experiment-specific param-
eter values will be provided separately in Tables 5 and 6 in the results 
section.

3.2.  The controllable structure of a quadrotor UAV

Quadrotor UAVs are capable of achieving six degrees of freedom in 
pitch, yaw, roll, vertical, fore and aft, and lateral motion by translating 
and rotating along the 𝑥, 𝑦 and 𝑧 axes. The process is accomplished 
by controlling four kinetic input quantities of the motor, denoted by 
𝐔 =

(

𝑈1, 𝑈2, 𝑈3, 𝑈4
)𝑇 , and six output control variables that include the 

changes of movements 𝐯 = (Δ𝑥,Δ𝑦,Δ𝑧) on the 𝑥, 𝑦, and 𝑧 directions, and 
the changes of attitude angles 𝐀 = (Δ𝜙,Δ𝜃,Δ𝜓) resulting from rotation 
on the three axes.

Specifically, 𝐯 stands for linear velocity, which is the speed at which 
the UAV moves in real space and determines the location and speed 
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Table 2 
Key notations in the system model.
 Notation Definition  Notation Definition

Network, Task Assignment, and Resource Allocation-Related Parameters
𝐾 The total number of MDs 𝐿 The length of every timeslot
𝑇 The total number of timeslots required 

to complete all tasks
(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 ) The location of the 𝑗th MD

(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) The location of the UAV at the 𝑡th times-
lot

𝐯(𝑡) The UAV’s velocity vector at the 𝑡th 
timeslot

𝑑𝑗 (𝑡) The distance between the UAV and 𝑗th 
MD at the 𝑡th timeslot

𝐵𝑐 The battery capacity of the UAV

𝑁𝑗 The total number of tasks from the 𝑗th 
MD

𝑁𝑐 The total number of wireless channels

𝐶𝑗 (𝑡) The number of channels assigned to the 
𝑗th MD at the 𝑡th timeslot

𝑁𝑏 The number of UAV propeller blades

𝜆𝑗 Task arrival rate of the 𝑗th MD 𝑠𝑖𝑗 (𝑡) Input data size of the 𝑖th task from the 
𝑗th MD at timeslot 𝑡

𝑐𝑖𝑗 CPU cycles per bit required for the 𝑖th 
task from the 𝑗th MD

𝑃𝑗 (𝑡) Channel allocation proportion for the 𝑗th 
MD (Gamma-based)

𝛼, 𝛽 Shape and rate parameters in the 
Gamma-based channel allocation

𝐨𝑖𝑗 (𝑡) Task execution decision vector 
(MD/UAV/DC) for task (𝑖, 𝑗) at timeslot 
𝑡

 UAV Dynamics and Propulsion Parameters
𝑚 UAV mass 𝑔 Gravitational acceleration
𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 Rotational inertia around 𝑥, 𝑦, 𝑧 axes 𝑙 Distance from UAV center to rotor
𝐔 Dynamics input vector (𝑈1 , 𝑈2 , 𝑈3 , 𝑈4)𝑇 𝜔𝑖(𝑡) Angular velocity of rotor 𝑖 at timeslot 𝑡
𝑅 The radius of UAV propeller blades 𝛾 The mounting angle of UAV propeller 

blades
𝑃𝑤 , 𝑃𝑡 Width and thickness of UAV propeller 

blades
𝑝𝑢(𝑡), 𝑝𝑑 (𝑡), 𝑝𝑗 (𝑡) The transmission power of the UAV, the 

DC, or the 𝑗th MD at the 𝑡th timeslot
𝐶𝑇 , 𝐶𝑀 Thrust and torque coefficients of the pro-

pellers
𝑄𝛾 (𝑡) Yaw-/mounting-angle-dependent coeffi-

cient in the propeller model
 Computation and Queuing Parameters
𝑓 (𝑡), 𝑓𝑗 (𝑡) The processing frequency of equipment 

for UAV, or the 𝑗th MD at the 𝑡th timeslot
𝛿𝑢 , 𝛿𝑗 Computation-energy coefficients for 

UAV and MD
𝑄̄ UAV computation queue-capacity pa-

rameter (bit-equivalent)
𝕊(𝑡) The weighted sum of network energy 

consumption and delay at the 𝑡th times-
lot

of the UAV in the map. 𝐀 determines angular velocities, the attitude 
change and the turning speed of the UAV.

According to the Newton-Euler theorem, the nonlinear dynamics 
equations of a quadrotor UAV are [43],

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥̈(𝑡) = 1
𝑚𝑈1(𝑡)(sin𝜙 sin𝜓 + cos𝜙 sin 𝜃 cos𝜓)

𝑦̈(𝑡) = 1
𝑚𝑈1(𝑡)(− sin𝜙 sin𝜓 + cos𝜙 sin 𝜃 sin𝜓)

𝑧̈(𝑡) = 1
𝑚𝑈1(𝑡)(cos𝜙 cos 𝜃) − 𝑔

𝜙̈(𝑡) = 1
𝐼𝑥

(

𝑙𝑈2(𝑡) − 𝜃̇𝜓̇
(

𝐼𝑧 − 𝐼𝑦
))

𝜃̈(𝑡) = 1
𝐼𝑦

(

𝑙𝑈3(𝑡) − 𝜙̇𝜓̇
(

𝐼𝑥 − 𝐼𝑧
))

𝜓̈(𝑡) = 1
𝐼𝑧

(

𝑈4(𝑡) − 𝜙̇𝜃̇
(

𝐼𝑦 − 𝐼𝑥
))

(2)

where the left hand side of each equation represents the second order 
derivative of the relevant variable with respect to 𝑡. 𝐼𝑥, 𝐼𝑦, and 𝐼𝑧 are 
the rotational inertia of the UAV body around its own 𝑥, 𝑦, and 𝑧 axes, 
respectively. 𝐼𝑥 and 𝐼𝑦 are approximated based on the assumption of 
structural symmetry of the quadrotor UAV. Meanwhile, 𝑙 is the distance 
from the center of mass of the body to the center of the rotor, which is 
also equal to half of the airframe wheelbase.

Fig. 2 shows the schematic diagram of a quadrotor UAV in motion. 
Two pairs of motors (𝑀1,𝑀4) and (𝑀2,𝑀3) rotating in opposite direc-
tions are used to eliminate counter-torque. Moreover, 𝑚 is the mass of 
the UAV. 𝑔 is the acceleration of gravity, 𝐼𝑥, 𝐼𝑦, and 𝐼𝑧 are the rotational 
inertia of the UAV body around 𝑥, 𝑦, and 𝑧 axes, respectively. In Fig. 2, 
subscripts 𝑒 and 𝑏 denote the earth (inertial) frame and body frame, re-
spectively; the corresponding coordinate axes are denoted as (𝑥𝑒, 𝑦𝑒, 𝑧𝑒)
and (𝑥𝑏, 𝑦𝑏, 𝑧𝑏). These axes correspond to the translational directions as-
sociated with the variables 𝑥, 𝑦, 𝑧 in (2).

The input and output quantities interact with each other to change 
the UAV motion by adjusting the rotational speed of the four rotors 
(propellers). The thrusts 𝐹𝑖(𝑡), (𝑖 = 1, 2, 3, 4) provided by the motors are 
directly proportional to the square of the angular velocity of the rotors 
(propellers) of the corresponding motors 𝜔𝑖(𝑡), (𝑖 = 1, 2, 3, 4), namely,

𝐹𝑖(𝑡) = 𝐶𝑇 (𝑡)𝜔𝑖(𝑡)2, (3)

where 𝐶𝑇 (𝑡) is the thrust coefficient of the propellers. The torque rep-
resenting the magnitude of the torque to overcome the air resistance is 
given by

𝑀𝑝(𝑡) = 𝐶𝑀 (𝑡)𝜔𝑖(𝑡)2, (4)

with 𝐶𝑀 (𝑡) as the torque coefficient.
For more details on principles related to attitude control and the 

calculation of the dynamics input 𝐔, see A.

3.3.  Rotor propeller design of quadrotor UAV

The design and performance modeling of multirotor UAVs, includ-
ing propeller configurations and power systems, have been extensively 
studied [44,45]. We now introduce the factors that would affect 𝐶𝑇 (𝑡)
and 𝐶𝑀 (𝑡). The propeller is the power source of the UAV. Fig. 3 shows 
the structure of the quadrotor UAV propeller, where the propeller ra-
dius 𝑅 refers to the sum of the blade length 𝑟 and the radius of the 
mounting interface 𝑟0. The blade mounting angle is the angle between 
the propeller blades and the plane of the UAV airframe, denoted by 
𝛾. Along with the blade width 𝑃𝑤, thickness 𝑃𝑡, we define the torque
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Fig. 2. Schematic diagram of a quadrotor UAV in motion, where subscripts 𝑒 and 𝑏 denote the earth and body frames, respectively, and (𝑥𝑒, 𝑦𝑒, 𝑧𝑒) and (𝑥𝑏, 𝑦𝑏, 𝑧𝑏)
denote their coordinate axes associated with the translational directions 𝑥, 𝑦, 𝑧.

Fig. 3. Schematic of quadrotor UAV propeller hardware.

coefficient as,

𝐶𝑀 (𝑡) = 2𝑅 ⋅ 𝐶𝑇 (𝑡) =

(

1
2𝜋

)2
𝜌𝑎(𝑡)(2𝑅)5

𝑁𝐵 ∫ 𝑅𝑟0 𝑃
4
𝑡 𝑃𝑤𝑄𝛾 (𝑡)𝑑𝑟

, (5)

where 𝑁𝐵 is the number of propeller blades, and 𝑄𝛾 (𝑡) is determined 
by the propeller blade mounting angle and yaw angle in the current 
state. The power loading and disk loading characteristics of propellers 
significantly influence the overall energy efficiency [46]. 𝜌𝑎(𝑡) is the air 
density determined by the atmospheric pressure at the location of the 
UAV and the absolute temperature, specifically,

𝜌𝑎(𝑡) =
𝑃𝑔 ⋅𝑀𝑔

𝑅𝑔 ⋅ Θ(𝑡)
, (6)

where 𝑃𝑔 is the standard atmosphere, 𝑀𝑔 is the molecular weight of 
gas, 𝑅𝑔 is the gas constant, Θ(𝑡) is the outside ambient temperature, 𝑧(𝑡)
is the height of flight at the location of the UAV, and 𝑀𝑔 and 𝑅𝑔 are 
constants in the ideal gas state.

The values of propeller radius 𝑅 and airframe wheelbase 2𝑙 need to 
be set properly, in order to avoid collisions between neighboring pro-
pellers and underpowered situations. We illustrate the structural rela-
tionship in Fig. 4. In a symmetrically structured quadrotor configura-

tion, the diagonal separation distance between neighboring propellers 
is 
√

2𝑙, and the total width of the two propellers (2𝑅) must be less than 
this distance to avoid collision, namely 2𝑅 <

√

2𝑙. On the other hand, 
a too small 𝑅 (less than 𝑙∕3) will not provide enough lift for the UAV 
according to (3). Thus, there is a constrained relationship between 𝑅
and 𝑙, namely 

√

2
2 𝑙 ⩾ 𝑅 ⩾ 1

3 𝑙.

3.4.  Transmission model

We define a tuple (𝑚, 𝑛) to represent a transmission from 𝑚 to 𝑛, 
where 𝑚 and 𝑛 can be 𝑗 ∈ {1, 2,⋯ , 𝐾} (representing the 𝑗th MD), 𝑢 (the 
UAV), or 𝐷 (the DC).

We consider 𝜁𝑗 to be a parameter determined by the carrier frequency 
𝑓𝑐 and obstacle density, corresponding to the proportion of the Line of 
Sight (LoS) path obstructed between the 𝑗th MD and the UAV, while the 
elevation angle of the link is 𝜃𝑗 .

In our deployment, the communication antenna of the UAV is 
bottom-mounted, and the MDs are always located on the ground sur-
face. Therefore, the UAV always maintains a higher altitude than all 
MDs, ensuring that no geometric airframe shadowing occurs. The aggre-
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Fig. 4. Propeller radius in relationship to wheelbase for quadrotor UAV.

gated blockage effects–including terrain and man-made obstacles–are 
modeled through a parameter 𝜁𝑗 , as defined in the following equation.

The probability to establish a LoS connection between the 𝑗th MD 
and the UAV is,

𝑃 LoS𝑗 (𝑡) = 1
1 + 𝜁𝑗 ⋅ exp

(

−
(

𝜃𝑗 − 𝜁𝑗
)) . (7)

The Signal-to-Interference-plus-Noise Ratio (SINR) for (𝑚, 𝑛) at the 
𝑡th timeslot is,

𝜉(𝑚,𝑛)(𝑡) =
𝑝𝑚(𝑡)

(𝑚,𝑛)(𝑡) ⋅
(

𝐼(𝑚,𝑛)(𝑡) + 𝜎2𝑇
) , (8)

where 𝑝𝑚(𝑡) is the transmit power of node 𝑚 at the 𝑡th timeslot. We de-
note by 𝑃 LoS(𝑚,𝑛)(𝑡) the LoS probability of link (𝑚, 𝑛), which equals 𝑃 LoS𝑗 (𝑡)
for MD–UAV links and is set to 1 for the UAV–DC backhaul link for sim-
plicity. (𝑚,𝑛)(𝑡) = 𝑃 LoS(𝑚,𝑛)(𝑡) ⋅

(

4𝜋𝑓𝑐
𝑐 𝑑(𝑚,𝑛)(𝑡)

)

 is the path loss, 𝑐 and 𝑑(𝑚,𝑛)(𝑡)
stand for the speed of light and the distance between 𝑚 and 𝑛, respec-
tively. Here, 𝐼(𝑚,𝑛)(𝑡) denotes the aggregate external interference from 
concurrent transmissions outside our UAV-assisted fog network, which 
we model as additive noise for simplicity. 𝜎2𝑇  is the thermal noise. Our 
transmission model assumes orthogonal channel allocation within the 
UAV-assisted network (via the channel allocation mechanism in Sec-
tion 3.1), which ensures negligible co-channel interference among the 
𝐾 MDs communicating with the UAV. This simplified interference mod-
eling approach is standard in MEC and fog computing literature, where 
detailed multi-cell interference coordination would require additional 
coordination mechanisms and is considered as future work.

We can then obtain the effective transmission rate for (𝑚, 𝑛) at 𝑡th 
timeslot as,

𝑟(𝑚,𝑛)(𝑡) = 𝑊(𝑚,𝑛) log2
(

1 + 𝜉(𝑚,𝑛)(𝑡)
)

, (9)

where 𝑊(𝑚,𝑛) is the bandwidth of the wireless link.

3.5.  Energy consumption model

We consider that the total energy consumption includes the con-
sumption for the transmission and computation during the task offload-
ing process, as well as those for the movement of the UAV. Hereafter, 
we use the binary variables 𝑜MD𝑖𝑗 (𝑡), 𝑜UAV𝑖𝑗 (𝑡), and 𝑜DC𝑖𝑗 (𝑡) to specify the as-
signment of the 𝑖th task from the 𝑗th MD at the 𝑡th timeslot. A value of 
1 indicates that the task is assigned to the corresponding location.

3.5.1.  UAV movement
We consider that the motion state of the UAV is directly related to 

the rotational speed of the four DC motors. The energy consumption for 
UAV movement is highly dependent on the payload and flight character-
istics [45,47,48]. Thus, the energy consumption due to UAV movement 

at the 𝑡th timeslot is,

𝐸MOV(𝑡) =
4
∑

𝑖=1

(

𝐼𝑖(𝑡) ⋅ 𝐿
)

=
4
∑

𝑖=1

(

𝑉𝑚 − 𝜔𝑖(𝑡)𝑃𝑚
𝑅𝑚

⋅ 𝐿
)

, (10)

where 𝐼𝑖(𝑡) is the motor current, which can be calculated by (A.2) and (2) 
given that 𝑈 and 𝜔𝑖(𝑡)(𝑖 = 1, 2, 3, 4) (the linear speed of 𝑖th motor rotation 
(r/min) at the 𝑡th timeslot) are obtained by our proposed attitude control 
method. 𝑉𝑚 is the motor rated voltage, 𝑅𝑚 is the rated resistance of the 
UAV motor circuit, and 𝑃𝑚 is the electric potential constant determined 
by the motor structure.

3.5.2.  Energy consumption for transmission
If a task is assigned to the UAV, two segments of transmission will 

be incurred, namely from the MD to the UAV and the UAV back to the 
MD. On the other hand, if a task is assigned to the DC, two additional 
segments, namely from the UAV to the DC and from the DC back to the 
UAV, will be incurred. Therefore, energy consumption at the 𝑡th timeslot 
for transmitting the 𝑖th task from the 𝑗th MD is,

𝑒TR𝑖𝑗 (𝑡) =
(

𝑜UAV𝑖𝑗 (𝑡) + 𝑜DC𝑖𝑗 (𝑡)
)

( 𝑝𝑗 (𝑡)𝑠𝑖𝑗 (𝑡)
𝐶𝑗 (𝑡)𝑟(𝑗,𝑢)(𝑡)

+
𝑝𝑢(𝑡)𝑠𝑖𝑗 (𝑡)
𝐶𝑗 (𝑡)𝑟(𝑢,𝑗)(𝑡)

)

+ 𝑜DC𝑖𝑗 (𝑡)
( 𝑝𝑢(𝑡)𝑠𝑖𝑗 (𝑡)
𝐶𝑗 (𝑡)𝑟(𝑢,𝐷)(𝑡)

+
𝑝𝐷(𝑡)𝑠𝑖𝑗 (𝑡)
𝐶𝑗 (𝑡)𝑟(𝐷,𝑢)(𝑡)

)

.
(11)

where 𝐶𝑗 (𝑡) is the number of channels assigned to the 𝑗th MD.

3.5.3.  Energy consumption for computation
We consider that the additional energy consumption for computing 

a finite number of tasks in the DC is negligible as the DC is assumed to 
be always active in processing tasks from different sources. Therefore, 
the energy consumption for computing 𝑖th task of the 𝑗th MD can be 
obtained by

𝑒COMP
𝑖𝑗 (𝑡) = 𝑜UAV𝑖𝑗 (𝑡)𝛿𝑢𝑠𝑖𝑗 (𝑡)𝑐𝑖𝑗 (𝑓 (𝑡))

2 + 𝑜MD𝑖𝑗 (𝑡)𝛿𝑗𝑠𝑖𝑗 (𝑡)𝑐𝑖𝑗
(

𝑓𝑗 (𝑡)
)2, (12)

where 𝛿𝑢 and 𝛿𝑗 are the computation-energy coefficients (unit: 
J/(cycle2⋅bit)) for the UAV and the 𝑗th MD, respectively. Specifi-
cally, 𝛿𝑢 = 1.2 × 10−28 J/(cycle2⋅bit) for the UAV and 𝛿𝑗 = 3.0 × 10−28

J/(cycle2⋅bit) for MDs, where the higher value for MDs reflects their 
weaker hardware efficiency.

3.5.4.  Overall energy consumption
Based on the discussions above, the overall energy consumption at 

the 𝑡th timeslot can be expressed as,

𝔼(𝑡) =
𝐾
∑

𝑗=1

𝑁𝑗
∑

𝑖=1

[

𝑒TR𝑖𝑗 (𝑡) + 𝑒COM𝑖𝑗 (𝑡)
]

+ 𝐸MOV(𝑡), (13)

where 𝑁𝑗 is the total number of tasks the 𝑗th MD.

3.6.  Delay model

We consider three delay components: transmission, computation, 
and queuing.

3.6.1.  Transmission delay
The transmission delay for the 𝑖th task from the 𝑗th MD at the 𝑡th 

timeslot is,

𝑑TR𝑖𝑗 (𝑡) = 𝑜DC𝑖𝑗 (𝑡)
( 𝑠𝑖𝑗 (𝑡)
𝐶𝑗 (𝑡)𝑟(𝑢,𝐷)(𝑡)

+
𝑠𝑖𝑗 (𝑡)

𝐶𝑗 (𝑡)𝑟(𝐷,𝑢)(𝑡)

)

+
(

𝑜UAV𝑖𝑗 (𝑡) + 𝑜DC𝑖𝑗 (𝑡)
)

( 𝑠𝑖𝑗 (𝑡)
𝐶𝑗 (𝑡)𝑟(𝑗,𝑢)(𝑡)

+
𝑠𝑖𝑗 (𝑡)

𝐶𝑗 (𝑡)𝑟(𝑢,𝑗)(𝑡)

)

.
(14)
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3.6.2.  Computation delay
The delay for computing the 𝑖th task from the 𝑗th MD can be ex-

pressed as,

𝑑COMP
𝑖𝑗 (𝑡) = 𝑜UAV𝑖𝑗 (𝑡)

𝑠𝑖𝑗 (𝑡)𝑐𝑖𝑗
𝑓 (𝑡)

+ 𝑜MD𝑖𝑗 (𝑡)
𝑠𝑖𝑗 (𝑡)𝑐𝑖𝑗
𝑓𝑗 (𝑡)

. (15)

where 𝑓 (𝑡) (unit: GHz) denotes the UAV’s processing frequency, bounded 
by 𝑓min = 1.0 GHz and 𝑓max = 3.0 GHz, representing a high-performance 
onboard processor. Similarly, 𝑓𝑗 (𝑡) (unit: GHz) denotes the 𝑗th MD’s 
processing frequency, bounded by 𝑓min

𝑗 = 0.5 GHz and 𝑓max
𝑗 = 2.0 GHz. 

The UAV distributes its processing frequency 𝑓 (𝑡) among all assigned 
tasks according to the joint optimization algorithm, which minimizes 
the overall weighted energy–delay cost. Thus, resource allocation is im-
plicitly determined by the solution of the optimization problem rather 
than by a fixed scheduling rule.

Note that as the computing resources at the DC are sufficient for all 
practical purposes, we assume that the computation delay at the DC is 
negligible.

3.6.3.  Queuing delay
We consider two types of queuing delays: transmission queuing and 

computation queuing. Transmission queuing occurs when the arrival 
rate exceeds the communication service rate, while computation queu-
ing occurs when the aggregated task workload exceeds the UAV’s effec-
tive computing rate.

Our queuing model adopts an M/M/1-type abstraction, which is a 
standard first-order modeling approach in MEC literature for captur-
ing queuing behavior under stochastic task arrivals [49,50]. This ab-
straction enables tractable analysis while providing reasonable approx-
imations of system performance under moderate to high load condi-
tions. While more detailed queueing network models (e.g., multi-server 
queues or priority-based scheduling) could offer finer granularity, they 
would significantly complicate the optimization problem formulation. 
Our simplified model remains compatible with such extensions, which 
could be incorporated as future work when detailed scheduling policies 
are required.

Consider that the arrival rate for transmission from the 𝑗th MD to 
UAV is 𝜆𝑗 , and the processing rate at the UAV for receiving transmissions 
is [𝐿 ⋅ 𝐶𝑗 (𝑡) ⋅ 𝑟𝑗,𝑢(𝑡)]∕𝑠𝑗 (𝑡), where 𝑠𝑗 (𝑡) =

∑𝑁𝑗
𝑖=1 𝑠𝑖𝑗 (𝑡) is the sum of tasks data 

size from that MD. Let 𝜋𝑗 denote the probability that an arriving task 
from the 𝑗th MD does not enter the transmission/computation queue 
(e.g., executed locally), so the effective arrival rate is 𝜆𝑗 (1 − 𝜋𝑗 ). If the 
total arrival rate is larger than the processing rate, a queuing delay for 
transmission will be incurred [42], that is,

𝑑Q𝑖𝑗 (𝑡) =
𝜆𝑗
(

1 − 𝜋𝑗
)

𝑠𝑗 (𝑡)2

𝐿 ⋅ 𝐶𝑗 (𝑡)𝑟𝑗,𝑢(𝑡) ⋅
(

𝐿 ⋅ 𝐶𝑗 (𝑡)𝑟𝑗,𝑢(𝑡) − 𝜆𝑗
(

1 − 𝜋𝑗
)

𝑠𝑗 (𝑡)
) . (16)

Similarly, if the total sizes of arriving tasks exceed the computation ca-
pacity of the component, queuing delay for computation would be in-
curred for a proportion of the tasks. The expected queuing delay of the 
𝑖th task from the 𝑗th MD executed at UAV at 𝑡th timeslot is,

𝑑UAVQ𝑖𝑗 (𝑡) = 𝑄̄
∑𝐾
𝑗=1 𝜆𝑗

(

1 − 𝜋𝑗
)
−

∑𝐾
𝑗=1 𝜆𝑗

(

1 − 𝜋𝑗
)

𝑠𝑗 (𝑡)𝑐𝑗

𝜏𝑓 (𝑡)
∑𝐾
𝑗=1 𝜆𝑗

(

1 − 𝜋𝑗
)
, (17)

where 𝑄̄ = 5 × 107 (unit: bit-equivalent) is a queue-capacity parameter 
representing a queue threshold corresponding to the UAV’s onboard 
computing throughput, and 𝜏 = 1 s is a normalization constant that nor-
malizes the aggregated computational workload into an effective service 
time per task.

3.6.4.  Total delay
The total delay is obtained by summing all delay components men-

tioned earlier, that is,

𝔻(𝑡) =
𝐾
∑

𝑗=1

𝑁𝑗
∑

𝑖=1

(

𝑑TR𝑖𝑗 (𝑡) + 𝑑COMP
𝑖𝑗 (𝑡) + 𝑑UAVQ𝑖𝑗 (𝑡) + 𝑑Q𝑖𝑗 (𝑡)

)

. (18)

Congestion in the network manifests through the growth of queue 
lengths, which directly contributes to the queuing delay components 
𝑑Q𝑖𝑗 (𝑡) and 𝑑

UAVQ
𝑖𝑗 (𝑡) in the total delay expression. Since our objective 

function minimizes the weighted sum of delay and energy consump-
tion, congested conditions (characterized by increased queuing delays) 
are implicitly penalized. This approach eliminates the need for an ex-
plicit congestion metric, as the optimization naturally steers the system 
away from congestion-prone configurations to minimize the overall op-
erational cost.

4.  Joint optimization problem

We consider that the operational efficiency cost of the network is 
determined by the weighted sum of the energy and delay components. 
Therefore, our objective function consists of the energy consumption de-
fined in (13) and the time required to complete all tasks defined in (18), 
during the entire period of 𝑇 , as follows.

Min
{𝐨𝑖𝑗 (𝑡),𝐯(𝑡),𝜔𝑖(𝑡)|𝑡∈{0,⋯,𝑇 }}

𝕊 =
𝑇
∑

𝑡=0
[𝔻(𝑡) + 𝜖 ⋅ 𝔼(𝑡)]

s.t.
(

∁1
)

𝜔min ≤ 𝜔𝑖(𝑡) ≤ 𝜔max, ∀𝑖
(

∁2
)

0 ≤ |𝐯(𝑡)| ≤ 𝑣max
(

∁3
)

0 ≤ 𝑧(𝑡) ≤ 𝑧max
(

∁4
)

∑𝐾
𝑗=1 𝐶𝑗 (𝑡) ≤ 𝑁𝑐

(

∁5
)

𝑓min ≤ 𝑓 (𝑡) ≤ 𝑓max
(

∁6
)

𝑓min
𝑗 ≤ 𝑓𝑗 (𝑡) ≤ 𝑓max

𝑗
(

∁7
)

𝑝min ≤ 𝑝𝑢(𝑡) ≤ 𝑝max
(

∁8
)

𝑝min
𝑗 ≤ 𝑝𝑗 (𝑡) ≤ 𝑝max

𝑗
(

∁9
)

𝑜MD𝑖𝑗 (𝑡) + 𝑜UAV𝑖𝑗 (𝑡) + 𝑜DC𝑖𝑗 (𝑡) = 1
(

∁10
)

𝑜MD𝑖𝑗 (𝑡), 𝑜UAV𝑖𝑗 (𝑡), 𝑜DC𝑖𝑗 (𝑡) ∈ {0, 1}
(

∁11
)

∑𝑇
𝑡=0

(

𝐸UAV(𝑡)
)

≤ 𝐵𝑐
𝑖 ∈ {1,… , 𝑁𝑗}, 𝑗 ∈ {1,… , 𝐾}

(19)

The decision variables include the angular velocities 𝜔𝑖(𝑡) related to 
attitude control, the velocity vector 𝐯(𝑡) for trajectory planning, and task 
assignment decisions 𝐨𝑖𝑗 (𝑡). The parameter 𝜖 is a weighting factor in the 
objective function, which flexibly caters to different magnitudes and 
ranges of the two measurements, as well as reflects the preference in 
terms of the trade-off between the two metrics in various fog computing 
scenarios. We will demonstrate in the result section that our proposed 
approach can achieve high performances for a wide range of 𝜖 values. 
In terms of the constraints, ∁1 to ∁4 are constraints imposed by the hard-
ware limitations of the respective components. ∁5 to ∁8 ensure that the 
processing frequency and transmission power of UAV and MDs are al-
ways within the effective range. ∁9 and ∁10 guarantee that every task 
is executed at exactly one place at any moment (no duplicate comput-
ing). ∁11 restricts that the total energy consumption of the UAV during 
𝑇  does not exceed its battery capacity, as 𝐸UAV(𝑡) denotes the energy 
consumption of the UAV at the 𝑡th timeslot,

𝐸UAV(𝑡) = 𝐸MOV(𝑡) +
𝐾
∑

𝑗=1

𝑁𝑗
∑

𝑖=1

[

𝑜DC𝑖𝑗 (𝑡)
( 𝑝𝑢(𝑡)𝑠𝑖𝑗 (𝑡)
𝐶𝑗 (𝑡)𝑟(𝑢,𝐷)(𝑡)

)

+𝑜UAV𝑖𝑗 (𝑡)
( 𝑝𝑢(𝑡)𝑠𝑖𝑗 (𝑡)
𝐶𝑗 (𝑡)𝑟(𝑢,𝑗)(𝑡)

+ 𝛿𝑢𝑠𝑖𝑗 (𝑡)𝑐𝑖𝑗 (𝑓 (𝑡))
2
)]

.

(20)

Note that the processing frequencies 𝑓 (𝑡), 𝑓𝑗 (𝑡), and transmission pow-
ers 𝑝𝑢(𝑡), 𝑝𝑗 (𝑡) are dependent on the decision variables 𝐨𝑖𝑗 (𝑡). Numerous 
scholarly works (e.g., [42]) provided comprehensive analyses of these 
intricate interactions.

5.  Algorithms

The problem (19) possesses an intrinsic nonconvex nature. We divide 
the problem into three subproblems, one focusing on controlling the 
attitude, the second on generating an initial trajectory and altitude, and 
the other on task assignment and resource allocation, as well as further 
tuning the trajectory, respectively.
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Table 3 
Initial fuzzy PID control rules.
 NB: Negative Big (−3)  NM: Negative Middle (−2)  NS: Negative Small (−1)  ZO (0): zero
 PB: positive big (3)  PM: positive middle (2)  PS: positive small (1)

𝐸𝐶

𝐸  NB  NM  NS  ZO  PS  PM  PB
Δ𝑘𝑝/Δ𝑘𝑖/Δ𝑘𝑑 Δ𝑘𝑝/Δ𝑘𝑖/Δ𝑘𝑑 Δ𝑘𝑝/Δ𝑘𝑖/Δ𝑘𝑑 Δ𝑘𝑝/Δ𝑘𝑖/Δ𝑘𝑑 Δ𝑘𝑝/Δ𝑘𝑖/Δ𝑘𝑑 Δ𝑘𝑝/Δ𝑘𝑖/Δ𝑘𝑑 Δ𝑘𝑝/Δ𝑘𝑖/Δ𝑘𝑑

 NB  PB/NB/PS  PB/NB/NS  PM/NM/NB  PM/NM/NB  PS/NS/NB  ZO/ZO/NM  ZO/ZO/PS
 NM  PB/NB/PS  PB/NB/NS  PM/NM/NB  PS/NS/NM  PS/NS/NM  ZO/ZO/NS  NS/PS/ZO
 NS  PM/NB/ZO  PM/NM/NS  PM/NS/NM  PS/NS/NM  ZO/ZO/NS  NS/PM/NS  NS/PM/ZO
 ZO  PM/NM/ZO  PM/NM/NS  PS/NS/NS  ZO/ZO/NS  NS/PS/NS  NM/PM/NS  NM/PM/ZO
 PS  PS/NM/ZO  PS/NS/ZO  ZO/ZO/ZO  NS/PS/ZO  NS/PS/ZO  NM/PM/ZO  NM/PB/ZO
 PM  PS/ZO/PB  ZO/ZO/PM  NS/PS/PM  NM/PS/PM  NM/PM/PS  NM/PB/PS  NB/PB/PB
 PB  ZO/ZO/PB  ZO/ZO/PM  NM/PS/PM  NM/PM/PM  NM/PM/PS  NB/PB/PS  NB/PB/PB

5.1.  Attitude control

5.1.1.  Classical PID control
The classical PID control algorithm is a widely used algorithm for 

UAV attitude control [13]. It considers the following three control parts:

• Proportional control (P): the error of the controller input is amplified 
by a certain proportion. This constitutes the basic control part;

• Integral control (I): an integral term is introduced for correction of 
the proportional control to maintain the system stability. Its coeffi-
cient will approach 0 as time goes by;

• Differential control (D): a differential term based on the rate of 
change of the input error is added. The purpose is to improve the 
response accuracy by predicting the future trend of the input error.

The classical PID control is described by the following equation,

𝑈 (𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝑘𝑑
𝑑
𝑒
(𝑡)𝑑𝑡, (21)

where 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 are the proportional, integral and differential co-
efficients, respectively. The output of the PID control system, 𝑈 (𝑡), will 
affect 𝜔, 𝜃, 𝜙, 𝜓 , which will in turns have an impact on the power con-
sumption of the UAV (see Section 3.2 and A for details).

5.1.2.  Fuzzy PID control
The fuzzy PID control algorithm improves on the classical PID con-

trol by adding nonlinear adaptive capability through Fuzzy Set The-
ory [14,15]. By inputting fuzzification and a set of fuzzy rules, the PID 
gain is dynamically adjusted according to the current error 𝐸 and the 
error rate 𝐸𝐶. In addition, the coefficients 𝑘𝑝, 𝑘𝑖, and 𝑘𝑑 are no longer 
constants, enabling them to adapt to environmental changes. However, 
since the fuzzy rules are preset based on expert knowledge, the con-
troller lacks flexibility in adapting to unforeseen complex environmental 
changes in real time [17].

5.1.3.  FEAR-PID control
To solve the above problems, we propose the Fuzzy-Enhanced Adap-

tive Reinforcement PID (FEAR-PID) controller. FEAR-PID integrates RL 
in fuzzy PID to provide an additional adaptive layer. The control process 
of FEAR-PID is demonstrated in Fig. 5. Specifically, the initial control 
strategy is first provided by fuzzy logic based on expert knowledge. The 
specific rules are shown in Table 3.

Then, the PID gain coefficients in the fuzzy controller are obtained 
by a Double Deep Q-Network (DDQN). The RL module continuously op-
timizes the PID gain coefficients based on real-time feedback, thus effec-
tively adapting to the dynamic environment and improving the control 
effect. The RL agent in FEAR-PID is designed as follows:

• State: The state 𝑆𝑡 at timeslot 𝑡 consists of the 𝐸, 𝐸𝐶, and 
the PID coefficients Δ𝑘𝑝, Δ𝑘𝑖, and Δ𝑘𝑑 . Represented as 𝑆𝑡 =
[𝐸,𝐸𝐶,Δ𝑘𝑝,Δ𝑘𝑖,Δ𝑘𝑑 ].

• Action: The action 𝐴𝑡 = [Δ𝑘𝑝,Δ𝑘𝑖,Δ𝑘𝑑 ] represents the adjustments 
made to the PID coefficients at each step, resulting in updated PID 
gains,

⎧

⎪

⎨

⎪

⎩

𝑘𝑝−𝐹𝐸𝐴𝑅 = 𝑘𝑝 + Δ𝑘𝑝
𝑘𝑖−𝐹𝐸𝐴𝑅 = 𝑘𝑖 + Δ𝑘𝑖
𝑘𝑑−𝐹𝐸𝐴𝑅 = 𝑘𝑑 + Δ𝑘𝑑 .

(22)

• Reward: The reward function 𝑅𝑡 is designed to guide the controller 
toward minimizing the control error and achieving stable responses.

𝑅𝑡 = −
(

𝜗1|𝐸| + 𝜗2
|

|

|

|

𝑑𝐸
𝑑𝑡

|

|

|

|

+ 𝜗3 ⋅ Δ𝑈2 + 𝜗4 ⋅ Υ
)

(23)

where the absolute error |𝐸| aims to minimize the error. The term 
|

|

|

𝑑𝐸
𝑑𝑡

|

|

|

 controls the rate of error change for stability, Δ𝑈2 captures 
control output variation, incentivizing smoother adjustments, AND 
Υ denotes the overshoot penalizing excessive responses and aids in 
maintaining stability. The weights 𝜗1, 𝜗2, 𝜗3, and 𝜗4 are provided to 
balance accuracy, convergence speed, stability, and control smooth-
ness. The specific values and ranges of relevant parameters summa-
rized in Table 4.

5.2.  Task assignment and resource allocation

An overview of the steps in our proposed framework to address the 
task assignment, resource allocation and trajectory planning modules 
in the joint optimization problem is shown in Fig. 6. We will apply an 
Ant Colony System based algorithm (Algorithm 2, to be described in 
detail later) to determine an initial trajectory based on the terrain of 
the area and the position of MDs. Then, the attitude control mecha-
nism described in Section 5.1 will be invoked to determine the as well 
as tune the trajectory. Finally, a Particle Swarm Optimization based al-
gorithm (Algorithm 1, which was initially proposed in the conference 
version [10]) will determine the optimal task assignments and resource 
allocations. We will also analyze the convergence performance of the 
proposed algorithms at the end of the section.

We first introduce an algorithm based on the idea of Particle Swarm 
Optimization (PSO), for assigning tasks and allocating resources given 
that the trajectory is already known. The steps of our proposed algo-
rithm are demonstrated in Algorithm 1, which we refer the readers to 
the conference version of this paper [10] for more detailed explanations. 
We categorize the job assignment decision, transmission power, and pro-
cessing frequency as a collective entity 𝑠ℎ = (𝐨𝑖𝑗 , 𝑝𝑗 (𝑡), 𝑓𝑗 (𝑡)) within the 
particle swarm. Here, ℎ ∈ {1,… ,𝐻}. Next, the determination of the par-
ticle group’s position is carried out by uniformly sampling a set of par-
ticle groups denoted by 𝐻 ∈ ℕ+. In order to search for the optimal so-
lution, the velocity of the particle groups is initialized and subsequently 
updated using the method in [51]. The algorithm terminates when the 
discrepancy between the outcomes of 20 successive rounds is less than 
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Table 4 
FEAR-PID parameter settings.
 Parameters  Values  Parameters  Values  Parameters  Values

𝐸, 𝐸𝐶 -6, -5, -4, -3, -2, -1,
Δ𝑘𝑝, Δ𝑘𝑑 -3, -2, -1, 0,

Δ𝑘𝑖
-1.5, -1, 0,

 0, 1, 2, 3, 4, 5, 6  1, 2, 3  1, 1.5
𝜗1  3 𝜗2  0.5 𝜗3 , 𝜗4  1.5

Fig. 5. Schematic structure of FEAR-PID control system for UAV.

a specified threshold ð, and then outputs the minimal value 𝕊∗, the op-
timal decision for job assignment 𝐨∗𝑖𝑗 , the transmission power 𝑝∗𝑗 (𝑡), and 
the processing frequency 𝑓 ∗

𝑗 (𝑡).
Regarding fairness considerations, we note that fairness is not ex-

plicitly included as an optimization target in our objective function, 
which focuses on minimizing overall energy consumption and delay. 
However, our system design incorporates natural fairness mechanisms 
through orthogonal channel allocation (preventing channel monopoliza-
tion) and the feasibility constraints that ensure all tasks are assigned to 
appropriate execution locations. The Gamma-based channel allocation 
strategy further promotes equitable resource distribution by preventing 
extremely large tasks from dominating available channels. A compre-
hensive quantitative fairness analysis, including metrics such as Jain’s 
fairness index or per-user delay variance, would require additional mod-
eling extensions and is considered as future work for scenarios where 
explicit fairness guarantees are required.

5.3.  ACS-DS for trajectory planning: motivation and concept

We now present the concept and outlines of the ACS-DS (Ant Colony 
System with Decoupling and Safety values) algorithm to generate the 
optimal UAV trajectory to minimize 𝐸MOV. Then, we will prove that 
ACS-DS always converges to the optimal solution in polynomial time in 
subsequent subsections.

We first divide the 3D space into discrete grids, with the center of 
each unit of the grid serving as a waypoint, that is, the position that the 
UAV will pass. The 3D terrain is generated randomly, and we denote 

the area at and below terrain surfaces, referred as the no-fly zone, by 
𝑶 = {(𝑥𝑜𝑛, 𝑦

𝑜
𝑛, 𝑧

𝑜
𝑛)}, where 𝑛 ∈ {1, 2,… , 𝑁𝑜}, and 𝑁𝑜 is the total number 

of grids in the no-fly zone. Note that the classical ACS is not applicable 
to our three-dimensional trajectory planning problem as it struggles to 
converge in path searching in large three-dimensional spaces, and is 
likely to be trapped in local optima.

To overcome these issues and obtain the optimal trajectory with min-
imum cost in an efficient manner, we propose the ACS-DS, by incorpo-
rate the two special mechanisms to the classical ACS. We now elaborate 
these two mechanisms.

5.3.1.  Safety values
We enhance the heuristic function of the ACS-DS by adding a security 

value at each step based on the number of currently known the num-
bers of feasible and infeasible waypoints. Specifically, we determine the 
safety value of a waypoint based on the proportion of known feasible 
waypoints in the next available position for that waypoint. The safety 
value from waypoint 𝜇 to 𝜈 is calculated as 𝜅𝜇𝜈 =

𝑁𝑓−𝑁𝜇𝜈
𝑁𝑓

, where 𝑁𝑓  de-
notes the total number of waypoints in a preset constant range [0, 𝑅𝑓

]

, 
and 𝑁𝜇𝜈 denotes the number of infeasible waypoints in the range of 𝑁𝑓
over direction from 𝜇 to 𝜈. Safety values are updated using a similar 
rule to pheromones, and when choosing its next move, the ant would 
add the safety values to the pheromone levels for all possible actions. 
We will show in the results section that this method can reduce the run-
ning time and improve the operation efficiency compare to the classical 
ACS algorithm.
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Fig. 6. A flowchart demonstration of the components in our proposed framework.

Algorithm 1 Task assignment, power and frequency allocations based 
on particle swarm optimization.
Input: The length of an interval 𝑡, 𝑝max

𝑗 (𝑡); 𝑝min
𝑗 (𝑡); 𝑓max

𝑗 (𝑡); 𝑓min
𝑗 (𝑡); 𝐹𝐴1; 

𝐹𝐴2; 𝐹𝐼
Output: 𝕊∗(𝑡); 𝐨∗𝑖𝑗 ; 𝑝∗𝑗 (𝑡); 𝑓 ∗

𝑗 (𝑡)
1: for ℎ = 1 to 𝐻 do
2:  Initialize particles’ positions 𝐺ℎ
3:  Initialize particles’ velocities 𝑉ℎ
4:  Initialize 𝑝𝐵𝑒𝑠𝑡ℎ ⟵ 𝐺ℎ
5: end for
6: Initialize 𝑔𝐵𝑒𝑠𝑡(0) ⟵ argmin𝑓𝑖𝑡(𝑝𝐵𝑒𝑠𝑡ℎ), where 𝑓𝑖𝑡 represent the 
equation to compute 𝕊∗(𝑡); 𝑘 = 1

7: for ℎ = 1 to 𝐻 do
8:  Update 𝑉ℎ and 𝐺ℎ by acceleration factors 𝐹𝐴1, 𝐹𝐴2 and 𝐹𝐼
9:  if 𝑓𝑖𝑡(𝐺ℎ) < 𝑓𝑖𝑡(𝑝𝐵𝑒𝑠𝑡ℎ) then
10:  𝑝𝐵𝑒𝑠𝑡ℎ ⟵ 𝐺ℎ
11:  if 𝑓𝑖𝑡(𝑝𝐵𝑒𝑠𝑡ℎ) < 𝑓𝑖𝑡(𝑔𝐵𝑒𝑠𝑡) then
12:  𝑔𝐵𝑒𝑠𝑡(𝑘) ⟵ 𝑝𝐵𝑒𝑠𝑡ℎ
13:  end if
14:  end if
15:  𝑘⟵ (𝑘 + 1)
16: end for
17: while |𝑔𝐵𝑒𝑠𝑡(𝑘 + 1) − 𝑔𝐵𝑒𝑠𝑡(𝑘)| < ð do
18:  𝕊∗(𝑡) ⟵ 𝑓𝑖𝑡(𝑔𝐵𝑒𝑠𝑡)
19:  (𝐨∗𝑖𝑗 ; 𝑝∗𝑗 (𝑡); 𝑓 ∗

𝑗 (𝑡)) ⟵ 𝑔𝐵𝑒𝑠𝑡
20: end while
21: Output 𝕊∗(𝑡); (𝐨∗𝑖𝑗 ; 𝑝∗𝑗 (𝑡); 𝑓 ∗

𝑗 (𝑡))

5.3.2.  Decoupling
In ACS, when an ant reaches a point with no further viable options, 

it becomes trapped in a deadlock. To address this issue, we introduce 
a mechanism that allows the ant to escape the deadlock. Specifically, 
when any of following rule is satisfied during the ant’s movement, the 
Decoupling mechanism will be triggered to perform a backtracking be-
havior with depth (step size) 𝐷𝑏 to find alternative directions:

• An ant repeats a closed cycle consisting of two or more waypoints 
over multiple consecutive timeslots.

• A sudden drop in the amount of pheromone and safety values occurs, 
as indicated by the fact that the 𝜅 of the currently selected waypoint 
is less than half that of the previous waypoint.

• An ant falls into a local optimum and undetected in the early stage, 
that is, the ant has not triggered backtracking behavior for more than 
25 consecutive waypoints in the first one-third of all iterations.

It is worth noting that the third rule is only considered in the early 
stages of the algorithm (first one-third of all iterations) to avoid exces-
sive backtracking that reduces the convergence speed of the algorithm. 
This mechanism, by dynamically adjusting the pheromone levels and al-
lowing the ant to backtrack and explore new possibilities, ensures that 
the ACS-DS remains robust and capable of finding optimal trajectories 
even in complex and challenging scenarios.

5.4.  ACS-DS: Detailed steps

We let 𝑚 be the total number of ants in the colony, and 𝜎 = 𝑉𝑃 + 𝜅 be 
the guidance factor. We further denote 𝜎𝜇𝜈 (ℎ) as the sum of pheromone 
values and safety values between the neighboring waypoints 𝜇 and 𝜈
in the ℎth iteration. The initial pheromones on each edge are equal, 
namely 𝜎𝜇𝜈 (0) = 𝐶 for all 𝜇 and 𝜈. We denote by 𝑠∗ the global best path 
obtained by the algorithm, corresponding to the minimal-cost trajectory 
in our UAV optimization problem. Next, for each ant 𝑘 ∈ {1, 2… , 𝑚} in 
the colony, we initialize the pheromone 𝑉𝑃0, the safety value 𝜅0, and 
the heuristic value 𝜂. We also define the evaporation rate 𝜌 ∈ (0, 1) rep-
resenting the degree to which the guidance factor 𝜎𝜇𝜈 (ℎ) decays with 
iterations. Finally, we define 𝒮𝜄 as the set of waypoints that ant 𝜄 can 
pass next, and 𝑝𝜄𝜇𝜈 (ℎ) as the probability that ant 𝜄 moves from position 𝜇
to 𝜈 in the ℎth iteration. The exact value of 𝑝𝜄𝜇𝜈 (ℎ) is jointly determined 
by the guidance factor and heuristic value at the waypoint, as in the 
following equation,

𝑝𝜄𝜇𝜈 (ℎ) =

⎧

⎪

⎨

⎪

⎩

𝜎𝛼𝜇𝜈 (ℎ)𝜂𝜇𝜈
𝛽 (ℎ)

∑

𝑟∈𝒮𝜄 𝜎
𝛼
𝜇𝑟(ℎ)𝜂𝜇𝑟𝛽 (ℎ)

𝜈 ∈ 𝒮𝜄,

0  otherwise.
(24)

Detailed steps of ACS-DS are presented in Algorithm 2.

5.5.  ACS-DS: Proof of convergence

We now prove that Algorithm 2 will eventually converge, starting 
by the following proposition.
Proposition 1. In Algorithm 2, for the guidance factor 𝜎𝜇𝜈 on any edge 
(𝜇, 𝜈) generated by the ants during the searching process, there exists a max-
imum value 𝑔(𝑠∗) as ℎ → ∞. 
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Algorithm 2 ACS-DS: ACS-based trajectory planning with decoupling 
and safety values mechanisms.
Input: Positions of all MDs (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗);𝜌; 𝜂; 𝑉𝑃 0; 𝜅0; terrain sur-

face with no-fly zone (𝑥𝑜𝑛, 𝑦𝑜𝑛, 𝑧𝑜𝑛) ∈ 𝑶
Output: 𝐸MOV∗(𝑡); Trajectory of the UAV (𝑥𝜄(𝑡), 𝑦𝜄(𝑡), 𝑧𝜄(𝑡))
1: for ℎ = 1 to 𝐻 do
2:  Randomly set the initial coordinate of the UAV, 

(𝑥(0), 𝑦(0), 𝑧(0))
3:  while (𝑥(0), 𝑦(0), 𝑧(0)) ∉ 𝑶 do
4:  for each edge do
5:  Set initial pheromone, and calculate the initial 
safety values

6:  end for
7:  for each ant 𝜄 do
8:  (𝑥𝜄(ℎ), 𝑦𝜄(ℎ), 𝑧𝜄(ℎ)) = (𝑥(0), 𝑦(0), 𝑧(0))
9:  for each edge (𝜇, 𝜈) do
10:  Choose the next coordinate with probability 

𝑝𝜄𝜇𝜈(ℎ) by 𝜎 and 𝜂
11:  while (𝑥𝜄(ℎ + 1), 𝑦𝜄(ℎ + 1), 𝑧𝜄(ℎ + 1)) ∉ 𝑶 do
12:  Output (𝑥𝜄(ℎ + 1), 𝑦𝜄(ℎ + 1), 𝑧𝜄(ℎ + 1))
13:  end while
14:  end for
15:  Compute and output the length ∑𝑇

𝑡=1 𝑑𝑢(𝑡) of the 
path by the 𝜄th ant and 𝐸𝑢

16:  for each edge (𝜇, 𝜈) do
17:  Update 𝑉𝑃𝜇𝜈  and 𝜅𝜇𝜈 by 𝜌
18:  Update 𝜎𝜇𝜈(ℎ) by 𝑉𝑃𝜇𝜈  and 𝜅𝜇𝜈
19:  end for
20:  end for
21:  end while
22: end for
23: Compute and output 𝐸MOV∗(𝑡) by (10).

Proof.  For ACS-DS, the local update of the guidance factor for edge 
(𝜇, 𝜈) after the completion of each round of iteration can be represented 
as 𝜎𝜇𝜈 (ℎ + 1) = (1 − 𝜑) ⋅ 𝜎𝜇𝜈 (ℎ) + 𝜑 ⋅ Δ𝜎𝜇𝜈 (ℎ), while the global guidance 
factor is updated in a similar way, that is, 𝜎(ℎ + 1) = (1 − 𝜑) ⋅ 𝜎(ℎ) + 𝜑 ⋅
Δ𝜎(ℎ). Here, Δ𝜎𝜇𝜈 (ℎ) = 𝜎𝜇𝜈 (ℎ) − 𝜎𝜇𝜈 (ℎ − 1) is the increment of guidance 
factor on edge (𝜇, 𝜈) at the ℎth iteration.

𝜎𝜇𝜈 (1) = (1 − 𝜑) ⋅ 𝜎𝜇𝜈 (0) + 𝜑 ⋅ Δ𝜎𝜇𝜈 (0)

⋯

𝜎𝜇𝜈 (ℎ) = (1 − 𝜑)ℎ ⋅ 𝜎𝜇𝜈 (0) + (1 − 𝜑)ℎ−1 ⋅ 𝜑 ⋅ Δ𝜎𝜇𝜈 (1) +⋯

+ (1 − 𝜑) ⋅ 𝜑 ⋅ Δ𝜎𝜇𝜈 (ℎ − 1) + 𝜑 ⋅ Δ𝜎𝜇𝜈 (ℎ)

=
ℎ
∑

𝑞=1

(

(1 − 𝜑)ℎ−𝑞 ⋅ 𝜑 ⋅ Δ𝜎𝜇𝜈 (𝑞) + (1 − 𝜑)ℎ ⋅ 𝜎𝜇𝜈 (0)
)

lim
ℎ→∞

𝜎max
𝜇𝜈 (ℎ) = lim

ℎ→∞

( ℎ
∑

𝑞=1

(

(1 − 𝜑)ℎ−𝑞 ⋅ 𝜑 ⋅ Δ𝜎𝜇𝜈 (𝑞) +⋯
)

)

= 𝑔(𝑠∗) < ∞.

(25)

Thus, the guidance factor on each edge is bounded from the above 
by 𝑔(𝑠∗). ∎

After the first optimal solution is found, the guidance factor on the el-
ements belonging to an optimal solution is guaranteed to be no less than 
that on other elements as we have a sufficient number of subsequent 
generations. That is, the guidance factor on any element not belonging 
to an optimal solution will keep decreasing until it is no larger than the 
guidance factor on the elements belonging to an optimal solution. In 
mathematical terms, we have the following corollary.

Corollary 1. As ℎ → ∞, it is always true that 𝜎𝜇𝜈 (ℎ) ≥ 𝜎𝜇′𝜈′ (ℎ), if (𝜇, 𝜈) ∈
𝑠∗ and (𝜇′, 𝜈′) ∉ 𝑠∗. 
Proof.  Suppose it takes ℎ∗ generations to find the first optimal solu-
tion. We assume that for a certain (𝜇, 𝜈) ∈ 𝑠∗, there exists a (𝜇′, 𝜈′) ∉ 𝑠∗, 
𝜎𝜇𝜈 (ℎ∗) < 𝜎𝜇′𝜈′ (ℎ∗). Then, based on the guidance factor update rule in 
ACS-DS, by the ℎ∗ + ℎ′ generation, the guidance factor on (𝜇′, 𝜈′) can be 
derived as
𝜎𝜇′𝜈′

(

ℎ∗ + ℎ′
)

= max
{

𝜎𝜇𝜈
(

ℎ∗
)

, (1 − 𝜌)ℎ
′
⋅ 𝜎𝜇′𝜈′

(

ℎ∗
)

}

(26)

Therefore, 
lim
ℎ→∞

𝜎𝜇′𝜈′
(

ℎ∗ + ℎ′
)

= max lim
ℎ→∞

{

𝜎𝜇𝜈
(

ℎ∗
)

,
[

(1 − 𝜌)ℎ′ ⋅ 𝜎𝜇′𝜈′
(

ℎ∗
)

]}

= max
{

𝜎𝜇𝜈
(

ℎ∗
)

, 0
}

≤ 𝜎𝜇𝜈
(

ℎ∗
)

(27)

 ∎
Proposition 1 and Corollary 1 jointly prove that, after a sufficient 

number of iterations, the guidance factor on an optimal path is bounded 
and no less than those on other paths. Noticeably, the backtracking be-
havior caused by the decoupling mechanism in ACS-DS will only in-
crease the number of iterations for the current waypoint, but does not 
affect the updating of the guidance factor and the convergence to the 
optimal solution as in the original ACS. Therefore, the ACS-DS algorithm 
always converges to the global optimal solution.

5.6.  ACS-DS: Complexity analysis

We now analyze the complexity of Algorithm 2 when a total of 𝑛
users initiate computation requests in the current timeslot. Assume that 
in the worst case, Algorithm 2 triggers backtracking at every waypoint 
for each ant upfront, the path construction time complexity for 𝑚 ants 
is 𝑂(𝑚 ⋅ 𝑛2

)

. The complexity of each update of the guidance factor, and 
each calculation of the transfer probability is 𝑂(𝑛2). If the algorithm 
is finished after 𝐻 iterations, the complexity of the entire algorithm 
is 𝑂(𝐻 ⋅ 𝑚 ⋅ 𝑛2 +𝐻 ⋅ 𝑛2

)

. Since the magnitude of 𝑚 is similar to 𝑛, the 
complexity of the ACS-DS algorithm in completing all the tasks of the 
network is approximately 𝑂(𝐻 ⋅ 𝑛3

)

, which means that Algorithm 2 has 
a polynomial time complexity.

6.  Performance evaluation

We now present numerical results to assess the efficacy and versatil-
ity of our proposed solutions.

6.1.  Experiment setup

We consider a three-dimensional spatial domain with dimensions of 
𝑆 × 𝑆 ×𝑍. We randomly generate a continuous surface (no-fly zone) 
within a three-dimensional spatial domain as shown in Figs. 7a and 7b, 
and consider that 𝐾 MDs are placed on the ground conforming to the 
terrain height, with their positions uniformly and randomly distributed 
in the space. All MDs are placed at the terrain surface height, and the 
UAV always operates at an altitude higher than the MD elevations. The 
values of key system parameters are listed in Table 5.

The UAV flight time 𝑇  is obtained by cumulatively summing the 
propulsion energy consumed at each timeslot, where the energy usage 
is determined from the rotor-speed-dependent motor model already de-
fined in Section 3.2. The endurance is reached once the accumulated 
consumption equals the battery capacity 𝐵𝑐 , giving the maximum fea-
sible 𝑇  under a given trajectory and control strategy. Specifically, 𝑇  is 
calculated as:

𝑇 = max

{

𝑡 ∈ ℕ ∶
𝑡

∑

𝜏=0
𝐸UAV(𝜏) ≤ 𝐵𝑐

}

, (28)
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Fig. 7. Trajectories planned by different mechanisms on a 3D spatial domain. The terminal point shown in Fig. 7 represents the UAV’s final hovering location for 
sustained communication rather than the physical position of the MD.

Table 5 
Values of key system parameters.
 Parameter  Value  Parameter  Value
𝑆  50,000 m 𝑍  3000 m
𝐿  0.1 s 𝜖  [0.05, 1.00]
𝑚 50 kg 𝑎  5.28 m∕s2

𝑔  9.81 m∕s2 𝑙  1150 mm
𝐾  50 𝑅  512 mm
𝑁𝑐  40 𝑃𝑡  7.5 mm
𝑁𝐵  2 𝑃𝑤  250 mm
𝐵𝑐  5000 Wh 𝐼𝑥 5.5
𝑣max 15 m∕s 𝐼𝑦 5.5
𝑧max  2500 m 𝐼𝑧 10.0
𝜔min 200 rpm 𝜔max 5000 rpm
𝐶𝑇  1.483 (N ⋅m ⋅min2

)

∕r2 𝐶𝑀  2.925 (N ⋅m ⋅min2
)

∕r2

𝑀𝑔  29 g∕mol 𝑅𝑔  8.314 J∕(mol ∗ K)
𝑇 20-35min 𝑁𝑗 1-5
𝑓min 1.0GHz 𝑓max 3.0GHz
𝑓min
𝑗 0.5GHz 𝑓max

𝑗 2.0GHz
𝛿𝑢 1.2 × 10−28 J/(cycle2⋅bit) 𝛿𝑗 3.0 × 10−28 J/(cycle2⋅bit)
𝑄̄ 5 × 107 (bit-equivalent) 𝜏 1.0 s

Table 6 
Values of key algorithmic parameters.
 Parameter  Value  Parameter  Value  Parameter  Value
𝜌  0.25 𝑉𝑃0  3.8 𝜂  2.5
𝐹𝐴1, 𝐹𝐴2  2.0 𝐹𝐼  0.65 𝑅𝑓 , 𝐷𝑏  200 m

where 𝐸UAV(𝜏) is defined in (20) and includes both movement energy 
𝐸MOV(𝜏) defined in (10)) and other energy consumption components. 
Values of key parameters used in the algorithms described earlier in 
this paper are listed in Table 6. All experimental results presented in 
this section are based on the average of the 50 independent runs with 
the weighting factor 𝜖 randomly generated within its domain for each 
run.

For the task assignment and resource allocation part, we adopt PSO 
(Algorithm 1), which has been demonstrated effective and robust in 
our earlier conference paper [10], for all experiments in this section. 
For the attitude control and trajectory planning modules, we focus 
on evaluating the performance of our proposed ACS-DS (Algorithm 2) 
and ATC (Section 5.1). Note that our work addresses a joint UAV 
control–communication–computation optimization problem, which fun-
damentally differs from traditional networking-only scheduling tasks. 
Conventional networking baselines such as Round Robin, Proportional 
Fair, or queue-based schedulers cannot operate in our setting, as they
assume fixed infrastructure and do not interact with UAV flight dynam-
ics, propulsion energy, or real-time orientation-dependent channel vari-
ations. These classical methods also do not model UAV physical con-

straints, motor-level energy consumption, computation frequency con-
trol, or end-to-end latency decomposition, all of which are essential 
components of our optimization problem. Therefore, consistent with the 
standard practice in the UAV-assisted MEC and cross-layer optimiza-
tion literature, we adopt representative algorithmic families that can 
jointly optimize continuous control variables and discrete resource allo-
cation decisions. Specifically, we examine the following ten implemen-
tations, including our proposed approach, recently proposed heuristic 
(e.g., [12,20]), and RL-based methods [11], and compare their perfor-
mances in terms of overall operational efficiency cost.

• ACS: The trajectory of the UAV is planned using the classical 
Ant Colony System (ACS). Task assignment, processing frequencies, 
transmission powers, and channel allocation follow the optimization 
procedures described in Section 3. No special mechanisms are ap-
plied for attitude control.

• GA-SCA: The UAV trajectory is optimized using a hybrid method 
combining Genetic Algorithm (GA) and Successive Convex Approxi-
mation (SCA), as proposed in [12]. The remaining parameters follow 
the same strategy as ACS.

• CPS-ACO: The UAV trajectory is planned using the Chaotic-
Polarized-Simulated Ant Colony Optimization (CPS-ACO) method, 
proposed in [20]. Other system parameters are optimized as in ACS.

• TD3: The UAV trajectory is planned using the Twin Delayed Deep 
Deterministic Policy Gradient (TD3) algorithm, as described in
[11,36]. Other configurations are consistent with the baseline setup 
in ACS.

• ACS-DS: This is an enhanced version of ACS, where UAV trajec-
tory planning incorporates our proposed decoupling and safety value 
mechanisms, detailed in Algorithm 2. Other parameter settings re-
main unchanged.

• CPS-ACO+ATC: Based on CPS-ACO, this method integrates the at-
titude control mechanism described in Section 5.1 to enable more 
stable UAV dynamics.

• TD3+ATC: Based on TD3, this variant incorporates the attitude con-
trol mechanism described in Section 5.1 to improve stability and re-
sponsiveness.

• ACS-DS+ATC: This is the full version of our proposed method, 
which combines the decoupled safe trajectory planning in ACS-DS 
with the attitude control mechanism in Section 5.1.

6.2.  Simulation environments

The experimental evaluation of the proposed framework is con-
ducted using three complementary simulation environments, each de-
signed to address different aspects of system validation and serving dis-
tinct roles in the evaluation pipeline.
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Fig. 8. Simulation environments used for framework evaluation.

• Isaac Sim: This Omniverse/PhysX-based robotics simulation plat-
form provides high-fidelity rigid-body UAV dynamics that accurately 
model inertia, thrust, and torque characteristics. As shown in Fig. 8a, 
the environment incorporates realistic environmental disturbances 
including wind fields, actuator latency, and platform vibration, en-
abling high-fidelity physical verification of control algorithms. We 
utilize Isaac Sim to validate the FEAR-PID controller’s stability under 
realistic dynamics and to verify that the UAV parameters specified in 
Table 5 exhibit physically correct behavior. We additionally lever-
age Isaac Sim’s built-in/official USD environment assets as realistic 
scene data for representative outdoor scenarios, so that the controller 
is also inspected under non-trivial geometry and terrain context be-
yond synthetic setups. This physics-based validation ensures that our 
control strategies and parameter selections are feasible for real-world 
deployment.

• Microsoft AirSim: This platform offers photorealistic rendering 
powered by the Unreal Engine, featuring realistic suburban and 
mountainous environments that represent the large-scale outdoor 
deployment scenarios described in our system model (e.g., AirSimNH 
and LandscapeMountains scenes). As shown in Fig. 8c and Fig. 8d, 
the environment provides high-fidelity visual representation of com-
plex terrain with realistic lighting and atmospheric effects. The plat-
form provides comprehensive sensor emulation including RGB cam-
eras, depth sensors, semantic segmentation, IMU, GPS, and realistic 
noise models, and also exposes environment controls such as time-of-
day and weather. We employ AirSim to support interactive mission 
execution with the built-in multirotor dynamics under deployment-
scale scenes and configurable conditions, and to generate syn-
chronized FPV/chase-view visualizations for representative runs via
ExternalPhysicsEngine (pose-driven) replay, which facilitates consis-
tent presentation and debugging across different methods.

• Lightweight web-based demonstration1: This accessible interac-
tive visualization tool is inspired by AirSim’s visual style. As illus-
trated in Fig. 8b, the simplified environment employs streamlined 

1 https://shuaijun-liu.github.io/UAV-Assisted-Fog-Computing-Simulation-Demo

UAV dynamics without full rigid-body physics, yet incorporates dy-
namic wind effects, simplified control loops, and procedural terrain 
generation. The web demo serves to qualitatively visualize UAV be-
havior, trajectory evolution, and controller stability, offering prac-
titioners and researchers an intuitive understanding of the system’s 
operational characteristics without requiring specialized simulation 
software.

These three environments complement each other: Isaac Sim vali-
dates physical feasibility and control robustness with high-fidelity dy-
namics and asset-based scenes, AirSim evaluates deployment-scale per-
formance in interactive Unreal Engine environments, and the web 
demonstration provides intuitive qualitative insights. Together, they 
form a comprehensive evaluation framework that spans from low-level 
control validation to high-level mission assessment.

6.3.  Module-wise ablation study

To evaluate the individual contribution of each proposed component 
in our holistic framework, we conduct an ablation study by selectively 
removing one module at a time while keeping the others unchanged. 
This experimental design allows us to quantify the performance degra-
dation caused by the absence of specific functionalities and to demon-
strate the necessity of integrating all components for optimal system 
performance. We consider the following four key modules:

• FEAR-PID-based Attitude Control (ATC): Enhances UAV stability 
and reduces energy overhead during flight maneuvers;

• ACS-DS Trajectory Planner: Provides obstacle-aware and energy-
efficient path planning with fast convergence. Determining the op-
erational efficiency costs of the movement;

• PSO-based Task and Resource Assignment: Allocates task execu-
tion and communication resources effectively. Determining the op-
erational efficiency costs of tasks computation and unloading.;

• Gamma-based Channel Allocation Strategy: Prevents bandwidth 
monopolization by larger tasks. Determining the operational effi-
ciency costs of transmission.
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Fig. 9. Overall energy consumption vs. propeller blades parameters.

Table 7 
Ablation variants with specific module removals.
 Variant Name  Description
 Full  All modules enabled (ATC + ACS-DS + PSO + Gamma)
 w/o ATC  Replaces FEAR-PID with classical PID control
 w/o ACS-DS  Replaces ACS-DS with TD3 trajectory planner
 w/o PSO  Uses random task assignment and uniform power allocation
 w/o Gamma  Uses uniform channel assignment (𝑃𝑗 (𝑡) = 1∕𝐾)
 Baseline  Classical PID + TD3 trajectory + uniform task/power/channel assignment

Each of these modules is removed individually to create a controlled 
ablation variant of the full framework. The tested ablation variants are 
summarized in Table 7.

For each variant, we use the same network environment and task 
configuration as in the full model experiments. All experiments are re-
peated 50 times with randomized task generation to ensure statistical ro-
bustness. The evaluation metric is the overall operational efficiency 
cost, defined as the sum of total task delay and energy consumption, 
normalized across scenarios.

6.4.  Numerical results

6.4.1.  Optimal propeller parameters
Fig. 9 shows the relationship between the overall energy consump-

tion and propeller blade parameters including the number of blades, and 
the radius, width, mounting angle, and thickness of each blade, given 
that all other parameters are fixed. From the results, we can infer that, 
for a symmetric quadrotor UAV with a total mass of 80 kg, four rotors 
and a maximum acceleration up to 5.28 m∕s2, it is optimal to equip 2 pro-
peller blades with a radius of 500 mm, a width of 250 mm and a thickness 
of 7.5 mm. The average energy consumption under configurations with 
optimal values of parameters can be reduced by more than 30%, com-
pared to the average amount of 50 sets of random parameters generated 
uniformly within the respective allowable range of each parameter.

6.4.2.  Convergence performance
Fig. 10 demonstrates the average convergence speeds of GA-SCA, 

CPS-ACO, and ACS-DS over 60 iterations, and TD3 algorithm over 3000
episodes for 200 independent runs. The results show that both ACS-DS 

and TD3 can optimize the energy efficiency through efficient exploring 
optimal trajectories. However, the average training time per episode for 
the RL-based TD3 are significantly higher than the average running time 
per iteration of the other three heuristic algorithms. Therefore, due to its 
faster convergence and lower computational overhead, ACS-DS is more 
suitable for rapid decision-making and trajectory planning in unknown 
environments.

6.4.3.  Trajectory planning with attitude control
From the trajectories shown in Figs. 7a and 7b, we observe that, the 

CPS-ACO, TD3, and ACS-DS algorithms are more capable of avoiding no-
fly zones. In addition, our proposed Attitude Control (ATC) method can 
improve the trajectories planned by all algorithms, by effectively cor-
recting unwanted directional changes. Specifically, the FEAR-PID con-
troller dynamically optimizes flight attitude by adjusting the UAV rotor 
speed in real-time based on sensor feedback, including error and envi-
ronmental data, resulting in more stable and precise flight control.

6.4.4.  Operational efficiency cost
We present the results of the operational efficiency cost (considering 

both delay and energy consumption) achieved by different implementa-
tions in Fig. 11. Note that the horizontal axis in this figure (and similar 
plots throughout this section) represents discrete control time slots, each 
of duration 𝐿 = 0.1 s as defined in Section 3, rather than the UAV’s ac-
tual physical flight time. The overall mission duration 𝑇  spans 20 to 
35 minutes in our experiments, calculated as described in Section 6.1 
below Table 5), and the figures display representative segments of the 
trajectory for clarity of visualization. One important observation is that, 
the decoupling mechanism and safety values in ACS-DS can significantly 
reduce the overall consumption compared to the classical ACS, and have 
a slight advantage over SOTA (state-of-the-art) reinforcement learning 
methods such as TD3.

Moreover, the ATC mechanism further enhances the performance of 
both RL-based (TD3) and heuristic-based (ACS-DS and CPS-ACO) meth-
ods. Overall, ACS-DS+ATC achieves the best performance in terms of 
operational efficiency, closely followed by TD3+ATC. Specifically, com-
pared with conventional ACS, TD3+ATC reduces the operational effi-
ciency cost by 43.5%, while ACS-DS+ATC reduces it by 48.1%.

These results validate our initial claim in this paper, that jointly 
optimizing attitude control, trajectory planning, and task assignment 
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Fig. 10. Convergence performances of trajectory planning algorithms.

Fig. 11. Comparison of operational efficiency cost.

in UAV-assisted fog computing systems effectively captures the inter-
dependencies among these modules. Such integrated approaches (e.g., 
TD3+ATC and our proposed ACS-DS+ATC) lead to significant improve-
ments in system performance compared to optimizing each aspect indi-
vidually.

6.4.5.  Trajectory stability and robustness evaluation
To evaluate the stability and robustness of different control and plan-

ning algorithms in complex 3D environments, we conducted 50 indepen-
dent runs for each method under identical initial conditions and envi-
ronmental settings. The trajectories were generated by our Framework, 
validated in Isaac Sim and AirSim, and subsequently rendered in the 
WebGL visualization environment to provide a clearer and lightweight 
presentation. In all figures, each polyline corresponds to one complete 
trajectory obtained from a single run.

Fig. 12 compares the tracking performance of the classical PID con-
troller (red) and the proposed FEAR-PID controller (blue) along the same 
reference path. The trajectories generated by PID exhibit noticeable drift 

and oscillation, especially in densely cluttered urban regions. In con-
trast, FEAR-PID produces a significantly more compact trajectory cluster 
with reduced lateral deviation, demonstrating superior attitude stability 
and higher run-to-run consistency.

Fig. 13 presents the trajectory distributions of three planning algo-
rithms: ACS (yellow), TD3 (green), and ACS-DS (blue). ACS exhibits the 
largest dispersion, indicating higher sensitivity to environmental varia-
tions. TD3 shows moderate improvement in stability, while ACS-DS pro-
duces the most concentrated trajectories among the three, confirming 
that its decoupling mechanism and dynamic safety factors substantially 
enhance planning robustness across repeated trials.

Overall, these results show that,

1. FEAR-PID effectively reduces disturbance-induced drift and im-
proves attitude control precision;

2. ACS-DS generates more stable and reliable flight paths under re-
peated execution;

3. Jointly optimizing control and planning is essential for ensuring de-
pendable UAV operation in realistic 3D environments.

Computer Networks 277 (2026) 112064 

16 



S. Liu et al.

Fig. 12. Trajectory comparison between PID (red) and FEAR-PID (blue). Visualization of 50 independent runs for evaluating trajectory stability and robustness.

Fig. 13. Trajectory comparison of ACS (yellow), TD3 (green), and ACS-DS (blue). Visualization of 50 independent runs for evaluating trajectory stability and 
robustness.

6.4.6.  Ablation study results
We summarize the ablation results in Fig. 14, which report the av-

erage operational efficiency cost and its variance across configurations. 
The full model consistently achieves the lowest cost. Removing the ACS-
DS trajectory planner causes the sharpest degradation, reflecting its im-
portance in balancing energy and delay. The absence of PSO-based task 
assignment also leads to significant overhead due to poor task-resource 
coordination.

Interestingly, even the removal of the FEAR-PID attitude controller, 
while seemingly less impactful than trajectory and assignment modules, 

causes noticeable inefficiencies, particularly in maneuvering-intensive 
segments such as ascent, descent, and turns. This confirms that flight 
stability indirectly influences task execution and communication qual-
ity. The gamma-based channel allocation strategy, though relatively 
lightweight, also contributes to system-wide efficiency by avoiding 
bandwidth contention and ensuring smoother transmission.

Overall, the results confirm that all modules are complementary. The 
holistic approach offers not only the best mean performance but also 
the most stable behavior, reinforcing the need for joint optimization in 
UAV-assisted fog computing.
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Fig. 14. Average operational efficiency cost across ablation variants.

7.  Conclusions

In this paper, we have proposed a joint optimization framework 
to reduce the operational efficiency cost in UAV-assisted fog comput-
ing systems. Our proposed framework involves multiple modules, in-
cluding quadrotor UAV attitude control, trajectory planning in a three-
dimensional spatial domain with continuously varying terrain heights, 
and energy-efficient assignment of computing tasks to different com-
ponents in the network. We have designed appropriate mechanisms or 
algorithms for each module in the framework, and integrated them to-
gether to obtain a holistic solution to improve the overall efficiency 
in UAV-assisted fog computing. Specifically, we have proposed a novel 
FEAR-PID control mechanism for effective attitude control, designed the 
ACS-DS algorithm that overcomes the convergence issue in conventional 
approaches for trajectory planning in three-dimensional domains, and a 
modified PSO algorithm to determine the optimal task assignment. Nu-
merical results from a wide range of experiments have shown that our 
proposed framework can reduce the operational efficiency cost signifi-
cantly compared to existing approaches.
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Appendix A.  The Dynamics of a quadrotor UAV

We consider two key components in the structure of a quadrotor 
UAV, namely the body frame and the earth frame. The body frame is 
commonly used for attitude control of the UAV, where the positive di-
rection is the direction of ascent corresponding to the centers of the four 
motors.

We assume that the airframe has the following characteristics and 
constraints,

• The structure of the quadrotor UAV is symmetric;
• Friction between propeller and motor spindle is negligible;
• The stator magnetic field speed and rotor speed of the motors are 
infinitely close to each other, such that the slip rate is 0;

• The quadrotor and propeller structures are rigid, with a uniform mass 
distribution and the geometric center is the mass center;

• The Euler angles are bounded, i.e., −𝜋∕2 < 𝜙 < 𝜋∕2,−𝜋∕2 < 𝜃 <
𝜋∕2,−𝜋 < 𝜓 < 𝜋.

Based on the above assumptions, we combine the dynamics prin-
ciples to establish a rigid body model for attitude control of quadrotor 
UAV. It should be noted that all UAV coordinate system transformations 
are obtained by rotation synthesis with respect to the fixed coordinate 
system, the rotation matrix for the conversion of the body frame to the 
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earth frame with the following equation,
𝑅𝑒𝑏 =

(

𝑅𝑏𝑒
)−1 =

(

𝑅𝑏𝑒
)𝑇

=

⎡

⎢

⎢

⎢

⎣

cos 𝜃 cos𝜓 cos𝜓 sin 𝜃 sin𝜙 − sin𝜓 cos𝜙 cos𝜓 sin 𝜃 cos𝜙 + sin𝜓 sin𝜙
cos 𝜃 sin𝜓 sin𝜓 sin 𝜃 sin𝜙 + cos𝜓 cos𝜙 sin𝜓 sin 𝜃 cos𝜙 − cos𝜓 sin𝜙
− sin 𝜃 sin𝜙 cos 𝜃 cos𝜙 cos 𝜃

⎤

⎥

⎥

⎥

⎦

(A.1)

Four inputs, including total thrust 𝑈1, roll torque 𝑈2, pitch torque 𝑈3, 
and yaw torque 𝑈4, can be controlled based on the rotation speeds of 
the four motors of the UAV, that is,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑈1(𝑡) = 𝐶𝑇 (𝑡)
(

𝜔1(𝑡)2 + 𝜔2(𝑡)2 + 𝜔3(𝑡)2 + 𝜔4(𝑡)2
)

𝑈2(𝑡) = 𝐶𝑇 (𝑡)
(

−𝜔2(𝑡)2 + 𝜔4(𝑡)2
)

𝑈3(𝑡) = 𝐶𝑇 (𝑡)
(

−𝜔1(𝑡)2 + 𝜔3(𝑡)2
)

𝑈4(𝑡) = 𝐶𝑀 (𝑡)
(

−𝜔1(𝑡)2 + 𝜔2(𝑡)2 − 𝜔3(𝑡)2 + 𝜔4(𝑡)2
)

(A.2)
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